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Linear Algebra

1.1 Numbers

The natural numbers are the positive integers and zero. Rational numbers
are ratios of integers. Irrational numbers have decimal digits dn

x =
1X

n=mx

dn
10n

(1.1)

that do not repeat. Thus the repeating decimals 1/2 = 0.50000 . . . and
1/3 = 0.3̄ ⌘ 0.33333 . . . are rational, while ⇡ = 3.141592654 . . . is irrational.
Decimal arithmetic was invented in India over 1500 years ago but was not
widely adopted in Europe until the seventeenth century.

The real numbers R include the rational numbers and the irrational num-
bers; they correspond to all the points on an infinite line called the real line.

The complex numbers C are the real numbers with one new number i
whose square is �1. A complex number z is a linear combination of a real
number x and a real multiple iy of i

z = x+ iy. (1.2)

Here x = Rez is the real part of z, and y = Imz is its imaginary part.
One adds complex numbers by adding their real and imaginary parts

z1 + z2 = x1 + iy1 + x2 + iy2 = x1 + x2 + i(y1 + y2). (1.3)

Since i2 = �1, the product of two complex numbers is

z1z2 = (x1 + iy1)(x2 + iy2) = x1x2 � y1y2 + i(x1y2 + y1x2). (1.4)

The polar representation of z = x+ iy is

z = rei✓ = r(cos ✓ + i sin ✓) (1.5)
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in which r is the modulus or absolute value of z

r = |z| =
p
x2 + y2 (1.6)

and ✓ is its phase or argument

✓ = arctan (y/x). (1.7)

Since exp(2⇡i) = 1, there is an inevitable ambiguity in the definition of
the phase of any complex number z = rei✓: for any integer n, the phase
✓ + 2⇡n gives the same z as ✓. In various computer languages, the function
atan2(y, x) returns the angle ✓ in the interval �⇡ < ✓  ⇡ for which (x, y) =
r(cos ✓, sin ✓).
There are two common notations z⇤ and z̄ for the complex conjugate

of a complex number z = x+ iy

z⇤ = z̄ = x� iy. (1.8)

The square of the modulus of a complex number z = x+ iy is

|z|2 = x2 + y2 = (x+ iy)(x� iy) = z̄z = z⇤z. (1.9)

The inverse of a complex number z = x+ iy is

z�1 = (x+ iy)�1 =
x� iy

(x� iy)(x+ iy)
=

x� iy

x2 + y2
=

z⇤

z⇤z
=

z⇤

|z|2 . (1.10)

Grassmann numbers ✓i are anticommuting numbers, that is, the anti-
commutator of any two Grassmann numbers vanishes

{✓i, ✓j} ⌘ [✓i, ✓j ]+ ⌘ ✓i✓j + ✓j✓i = 0. (1.11)

So the square of any Grassmann number is zero, ✓2i = 0. These numbers have
amusing properties (used in chapter 20). For example, because ✓1✓2 = �✓2✓1
and ✓21 = ✓22 = 0, the most general function of two Grassmann numbers is

f(✓1, ✓2) = a+ b ✓1 + c ✓2 + d ✓1✓2 (1.12)

and 1/(1+a ✓i) = 1�a ✓i in which a, b, c, d are complex numbers (Hermann
Grassmann, 1809–1877).

1.2 Numerical Conventions

Physicists represent quantities that have been measured to within a certain
standard deviation � (section 15.2) either with ± signs or with paren-
theses. For instance, the current value of the mass of the Higgs boson is
written as mH0 = 125.25 ± 0.17 GeV or equivalently as mH0 = 125.25(17)
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GeV, and the mass of the Z boson as mZ = 91.1876 ± 0.0021 GeV or as
mZ = 91.1876(21) GeV. Here factors of c2 are suppressed as in natural
units (chapter 23).

One uses n digits to represent a number that one knows to n digits. Thus
mW = 80 GeV means that the mass of the W boson is approximately 80
GeV, not that it is exactly 80 GeV. Its measured value is mW = 80.379 ±
0.012 GeV or mW = 80.379(12) GeV.

PEMDAS: the order in which arithmetic operations are carried out is de-
termined first by parentheses, then by exponentiation, then by multiplication
and division doing left before right, and finally addition and subtraction do-
ing left before right. Thus a + b/cde = a + (b/(cde)). In this book, I have
often inserted extra parentheses to avoid uncertainty and confusion.

1.3 Arrays

An array is an ordered set of numbers. Arrays play big roles in computer
science, physics, and mathematics. They can be of any (integral) dimension.

A one-dimensional array (a1, a2, . . . , an) is variously called an n-tuple,
a row vector when written horizontally, a column vector when written
vertically, an n-vector, or simply a vector. The numbers ak are its entries
or components.
A two-dimensional array aik with i running from 1 to n and k from 1 to m

is an n⇥m matrix. The numbers aik are its entries, elements, or matrix
elements. One can think of a matrix as a stack of row vectors or as a queue
of column vectors. The entry aik is in the ith row and the kth column.
One can add together arrays of the same dimension and shape by adding

their entries. Two n-tuples add as

(a1, . . . , an) + (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (1.13)

and two n⇥m matrices a and b add as

(a+ b)ik = aik + bik. (1.14)

One can multiply arrays by numbers: Thus z times the three-dimensional
array aijk is the array with entries z aijk.

One can multiply an n-vector bk by a matrix aik that has m rows and n
columns and get an m-vector b0i

b0i = ai1b1 + ai2b2 + · · ·+ ainbn =
nX

k=1

aikbk for i = 1, . . .m. (1.15)
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Example 1.1 (Lorentz transformations) The spacetime coordinates x and
x0 in two inertial frames are related by matrix multiplication x0 = Lx or

x0a = La
0x

0 + La
1x

1 + La
2x

2 + La
3x

3 (1.16)

in which L is a 4⇥ 4 real matrix La
b.

One can multiply an n⇥ n matrix aik by two n vectors bk and ci

cTa b =
nX

i=1

nX

k=1

ci aik bk. (1.17)

Example 1.2 (Distance between points) The invariant squared distance
between points whose coordinates di↵er by dxi is given in terms of a 4 ⇥ 4
metric gik as

ds2 = dxTg dx =
4X

i=1

4X

k=1

gik dx
i dxk. (1.18)

One can multiply two arrays together no matter what their shapes and
dimensions. The outer product of an n-tuple a and an m-tuple b is an
n⇥m matrix with elements

(a b)ik = ai bk (1.19)

or an m⇥ n matrix with entries (b a)ki = bkai. If a and b are complex, then
one also can form the outer products (a b)ik = ai bk, (b a)ki = bk ai, and
(b a)ki = bk ai. The outer product of a matrix aik and a three-dimensional
array bj`m is a five-dimensional array

(a b)ikj`m = aik bj`m. (1.20)

An inner product is possible when two arrays are of the same size in one
of their dimensions. Thus the inner product (a, b) ⌘ ha|bi or dot product
a · b of two real n-tuples a and b is

(a, b) = ha|bi = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1b1 + . . .+ anbn. (1.21)

The hermitian inner product of two complex n-tuples a and b is

(a, b) = ha|bi = a · b = (a1, . . . , an) · (b1, . . . , bn) = a1 b1+ . . .+ an bn. (1.22)

The inner product of a vector with itself is nonnegative (a, a) � 0.
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The product of an m⇥ n matrix aik times an n-tuple bk is an m-tuple b0

whose ith component is

b0i = ai1b1 + ai2b2 + . . .+ ainbn =
nX

k=1

aikbk. (1.23)

This product is b0 = a b in matrix notation.
If the size n of the second dimension of a matrix a matches that of the

first dimension of a matrix b, then their product a b is a matrix with entries

(a b)i` = ai1 b1` + . . .+ ain bn` =
nX

k=1

aik bk`. (1.24)

1.4 Matrices

Matrices are two-dimensional arrays.
The trace of a square n⇥n matrix a is the sum of its diagonal elements

Tr a = tr a = a11 + a22 + . . .+ ann =
nX

i=1

aii. (1.25)

The trace of the product of two matrices is independent of their order

Tr (a b) =
nX

i=1

nX

k=1

aikbki =
nX

k=1

nX

i=1

bkiaik = Tr (b a) (1.26)

as long as the matrix elements are numbers that commute with each other.
It follows that the trace is cyclic

Tr (a b c . . . z) = Tr (b c . . . z a) = Tr (c . . . z a b) = . . . (1.27)

The transpose of an n⇥ ` matrix a is an `⇥ n matrix aT with row and
column indexes interchanged

�
aT
�
ij
= aji. (1.28)

Mathematicians often use a prime to mean transpose, as in a0 = aT. By
transposing indexes, you can sometimes write a sum of products of matrix
elements more simply as the matrix element of a product of matrices

nX

i=1

aik bi` =
nX

i=1

aTki bi` = (aT b)k` = (bT a)`k. (1.29)
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Transposition inverts the order of matrix multiplication

(ab)k` =
nX

i=1

akibi` =
nX

i=1

bi`aki =
nX

i=1

bT`iaTik = (bTaT)`k (1.30)

which is (a b) T = bT aT in matrix notation.
A matrix that is equal to its transpose

a = aT (1.31)

is symmetric, aij = aji.
The (hermitian) adjoint of a matrix is the complex conjugate of its trans-

pose. That is, the (hermitian) adjoint a† of an N ⇥ L complex matrix a is
the L⇥N matrix with entries

(a†)ij = a⇤ji. (1.32)

One may show that

(a b)† = b† a†. (1.33)

A matrix that is equal to its adjoint

aij = (a†)ij = a⇤ji (1.34)

(and which must be a square matrix) is hermitian or self adjoint

a = a† (1.35)

(Charles Hermite 1822–1901).

Example 1.3 (The Pauli Matrices) All three of Pauli’s matrices

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, and �3 =

✓
1 0
0 �1

◆
(1.36)

are hermitian (Wolfgang Pauli 1900–1958).

A real hermitian matrix a is symmetric, aik = aki. If a matrix a is hermi-
tian, then the double sum

hv|a|vi =
nX

i=1

nX

j=1

v⇤i aijvj 2 R (1.37)

is real for all complex n-tuples v.
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The Kronecker delta �ik is defined to be unity if i = k and zero if i 6= k

�ik =

⇢
1 if i = k
0 if i 6= k

(1.38)

(Leopold Kronecker 1823–1891). The identity matrix I has entries Iik =
�ik.
The inverse a�1 of an n⇥ n matrix a is a square matrix that satisfies

a�1 a = a a�1 = I (1.39)

in which I is the n⇥ n identity matrix.
So far we have been writing n-tuples and matrices and their elements with

lower-case letters. It is equally common to use capital letters, and we will
do so for the rest of this section.
A matrix U whose adjoint U † is its inverse

U †U = UU † = I (1.40)

is unitary. Unitary matrices are square.
A real unitary matrix O is orthogonal and obeys the rule

OTO = OOT = I. (1.41)

Orthogonal matrices are square.
An n⇥ n hermitian matrix A is nonnegative

A � 0 (1.42)

if for all complex vectors V the quadratic form

hV |A|V i =
nX

i=1

nX

j=1

V ⇤
i AijVj � 0 (1.43)

is nonnegative. It is positive or positive definite if

hV |A|V i > 0 (1.44)

for all nonzero vectors |V i.

Example 1.4 (Kinds of Positivity) The nonsymmetric, nonhermitian 2 ⇥
2 matrix ✓

1 1
�1 1

◆
(1.45)

is positive on the space of all real 2-vectors but not on the space of all
complex 2-vectors.
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Example 1.5 (Representations of Imaginary and Grassmann Numbers)
The 2 ⇥ 2 matrix

✓
0 �1
1 0

◆
(1.46)

can represent the number i since
✓
0 �1
1 0

◆✓
0 �1
1 0

◆
=

✓
�1 0
0 �1

◆
= �I. (1.47)

The 2 ⇥ 2 matrix
✓
0 0
1 0

◆
(1.48)

can represent a Grassmann number since
✓
0 0
1 0

◆✓
0 0
1 0

◆
=

✓
0 0
0 0

◆
= 0. (1.49)

To represent two Grassmann numbers, one needs 4 ⇥ 4 matrices, such as

✓1 =

0

BB@

0 0 1 0
0 0 0 �1
0 0 0 0
0 0 0 0

1

CCA and ✓2 =

0

BB@

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

1

CCA . (1.50)

The matrices that represent n Grassmann numbers are 2n⇥ 2n and have 2n

rows and 2n columns.

Example 1.6 (Fermions) The matrices (1.50) also can represent lowering
or annihilation operators for a system of two fermionic states. For a1 = ✓1
and a2 = ✓2 and their adjoints a†1 and a†2, the creation operaors, satisfy the
anticommutation relations

{ai, a†k} = �ik and {ai, ak} = {a†i , a
†
k} = 0 (1.51)

where i and k take the values 1 or 2. In particular, the relation (a†i )
2 = 0

implementsPauli’s exclusion principle, the rule that no state of a fermion
can be doubly occupied.

1.5 Vectors

Vectors are things that can be multiplied by numbers and added together
to form other vectors in the same vector space. So if U and V are vectors
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in a vector space S over a set F of numbers x and y and so forth , then

W = xU + y V (1.52)

also is a vector in the vector space S.
A basis for a vector space S is a set B of vectors Bk for k = 1 . . . n in

terms of which every vector U in S can be expressed as a linear combination

U = u1B1 + u2B2 + . . .+ unBn (1.53)

with numbers uk in F . The numbers uk are the components of the vector
U in the basis B. If the basis vectors Bk are orthonormal, that is, if
their inner products are (Bk, B`) = hBk|B`i = B̄k ·B` = �k`, then we might
represent the vector U as the n-tuple (u1, u2, . . . , un) with uk = hBk|Ui as
the corresponding column vector.

Example 1.7 (Hardware Store) Suppose the vectorW represents a certain
kind of washer and the vector N represents a certain kind of nail. Then if n
and m are natural numbers, the vector

H = nW +mN (1.54)

would represent a possible inventory of a very simple hardware store. The
vector space of all such vectors H would include all possible inventories of
the store. That space is a two-dimensional vector space over the natural
numbers, and the two vectors W and N form a basis for it.

Example 1.8 (Complex Numbers) The complex numbers are a vector
space. Two of its vectors are the number 1 and the number i; the vector
space of complex numbers is then the set of all linear combinations

z = x1 + yi = x+ iy. (1.55)

The complex numbers are a two-dimensional vector space over the real num-
bers, and the vectors 1 and i are a basis for it.

The complex numbers also form a one-dimensional vector space over the
complex numbers. Here any nonzero real or complex number, for instance
the number 1 can be a basis consisting of the single vector 1. This one-
dimensional vector space is the set of all z = z1 for arbitrary complex z.

Example 1.9 (2-space) Ordinary flat two-dimensional space is the set of
all linear combinations

r = xx̂+ yŷ (1.56)
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in which x and y are real numbers and x̂ and ŷ are perpendicular vectors
of unit length (unit vectors with x̂ · x̂ = 1 = ŷ · ŷ and x̂ · ŷ = 0). This vector
space, called R2, is a 2-d space over the reals.
The vector r can be described by the basis vectors x̂ and ŷ and also by

any other set of basis vectors, such as �ŷ and x̂

r = xx̂+ yŷ = �y(�ŷ) + xx̂. (1.57)

The components of the vector r are (x, y) in the {x̂, ŷ} basis and (�y, x) in
the {�ŷ, x̂} basis. Each vector is unique, but its components depend
upon the basis.

Example 1.10 (3-Space) Ordinary flat three-dimensional space is the set
of all linear combinations

r = xx̂+ yŷ+ zẑ (1.58)

in which x, y, and z are real numbers. It is a 3-d space over the reals.

Example 1.11 (Matrices) Arrays of a given dimension and size can be
added and multiplied by numbers, and so they form a vector space. For
instance, all complex three-dimensional arrays aijk in which 1  i  3,
1  j  4, and 1  k  5 form a vector space over the complex numbers.

Example 1.12 (Partial Derivatives) Derivatives are vectors; so are par-
tial derivatives. For instance, the linear combinations of x and y partial
derivatives taken at x = y = 0

a
@

@x
+ b

@

@y
(1.59)

form a vector space.

Example 1.13 (Functions) The space of all linear combinations of a set
of functions fi(x) defined on an interval [a, b]

f(x) =
X

i

zi fi(x) (1.60)

is a vector space over the natural N, real R, or complex C numbers {zi}.

Example 1.14 (States in quantum mechanics) In quantum mechanics, if
the properties of a system have been measured as completely as possible,
then the system (or our knowledge of it) is said to be in a state, often called
a pure state, and is represented by a vector  or | i in Dirac’s notation. If
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the properties of a system have not been measured as completely as possible,
then the system (or our knowledge of it) is said to be in a mixture or a
mixed state, and is represented by a density operator (section 1.37).

If c1 and c2 are complex numbers, and | 1i and | 2i are any two states,
then the linear combination

| i = c1| 1i+ c2| 2i (1.61)

also is a possible state of the system.
A harmonic oscillator in its kth excited state is in a state described by

a vector |ki. A particle exactly at position q is in a state described by a
vector |qi. An electron moving with momentum p and spin � is in a state
represented by a vector |p,�i. A hydrogen atom at rest in its ground state
is in a state |E0i.

Example 1.15 (Polarization of photons and gravitons) The general state
of a photon of momentum ~k is one of elliptical polarization

|~k, ✓,�i = cos ✓ ei�|~k,+i+ sin ✓ e�i�|~k,�i (1.62)

in which the states of positive and negative helicity |~k,±i represent a photon
whose angular momentum ±~ is parallel or antiparallel to its momentum ~k.
If ✓ = ⇡/4 + n⇡, the polarization is linear, and the electric field is parallel
to an axis that depends upon � and is perpendicular to ~k.

The general state of a graviton of momentum ~k also is one of ellipti-
cal polarization (1.62), but now the states of positive and negative helicity
|~k,±i have angular momentum ±2~ parallel or antiparallel to the momen-
tum ~k. Linear polarization again is ✓ = ⇡/4+n⇡. The state |~k,+i represents
space being stretched and squeezed along one axis while being squeezed and
stretched along another axis, both axes perpendicular to each other and to
~k. In the state |~k,⇥i, the stretching and squeezing axes are rotated by 45�

about ~k relative to those of |~k,+i.

1.6 Linear operators

A linear operator A maps each vector V in its domain into a vector
V 0 = A(V ) ⌘ AV in its range in a way that is linear. So if V and W are
two vectors in its domain and b and c are numbers, then

A(bV + cW ) = bA(V ) + cA(W ) = bAV + cAW. (1.63)
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If the domain and the range are the same vector space S, then A maps each
basis vector Bi of S into a linear combination of the basis vectors Bk

ABi = a1iB1 + a2iB2 + . . .+ aniBn =
nX

k=1

akiBk (1.64)

a formula that is clearer in Dirac’s notation (section 1.13). The square matrix
aki represents the linear operator A in the Bk basis. The e↵ect of A on
any vector U = u1B1 + u2B2 + . . .+ unBn in S then is

AU = A
nX

i=1

uiBi =
nX

i=1

uiABi =
nX

i,k=1

uiakiBk =
nX

i,k=1

akiuiBk. (1.65)

So the kth component u0k of the vector U 0 = AU is

u0k = ak1u1 + ak2u2 + . . .+ aknun =
nX

i=1

aki ui. (1.66)

Thus the column vector u0 of the components u0k of the vector U 0 = AU
is the product u0 = a u of the matrix with elements aki that represents the
linear operator A in the Bk basis and the column vector with components ui
that represents the vector U in that basis. In each basis, vectors and linear
operators are represented by column vectors and matrices.
Each linear operator is unique, but its matrix depends upon the

basis. If we change from the Bk basis to another basis B0
i

B0
i =

nX

k=1

ukiBk (1.67)

in which the n⇥ n matrix u`k has an inverse matrix u�1
ki so that

nX

k=1

u�1
ki B

0
k =

nX

k=1

u�1
ki

nX

`=1

u`kB` =
nX

`=1

 
nX

k=1

u`ku
�1
ki

!
B` =

nX

`=1

�`iB` = Bi

(1.68)
then the old basis vectors Bi are given by

Bi =
nX

k=1

u�1
ki B

0
k. (1.69)

Thus (exercise 1.9) the linear operator A maps the basis vector B0
i to

AB0
i =

nX

k=1

ukiABk =
nX

j,k=1

ukiajkBj =
nX

j,k,`=1

ukiajku
�1
`j B0

`. (1.70)
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So the matrix a0 that represents A in the B0 basis is related to the matrix a
that represents it in the B basis by a similarity transformation

a0`i =
nX

jk=1

u�1
`j ajkuki or a0 = u�1 a u (1.71)

in matrix notation. If the matrix u is unitary, then its inverse is its hermi-
tian adjoint

u�1 = u† (1.72)

and the similarity transformation (1.71) is

a0`i =
nX

jk=1

u†`jajkuki =
nX

jk=1

u⇤j`ajkuik or a0 = u† a u. (1.73)

Because traces are cyclic, they are invariant under similarity transforma-
tions

Tr(a0) = Tr(u�1 a u) = Tr(a uu�1) = Tr(a). (1.74)

Example 1.16 (Change of Basis) Let the action of the linear operator A
on the basis vectors {B1, B2} be AB1 = B2 and AB2 = 0. If the column
vectors

b1 =

✓
1
0

◆
and b2 =

✓
0
1

◆
(1.75)

represent the basis vectors B1 and B2, then the matrix

a =

✓
0 0
1 0

◆
(1.76)

represents the linear operator A. But if we use the basis vectors

B0
1 =

1p
2
(B1 +B2) and B0

2 =
1p
2
(B1 �B2) (1.77)

then the vectors

b01 =
1p
2

✓
1
1

◆
and b02 =

1p
2

✓
1
�1

◆
(1.78)

would represent B1 and B2, and the matrix

a0 =
1

2

✓
1 1
�1 �1

◆
(1.79)

would represent the linear operator A (exercise 1.10).
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A linear operator A also may map a vector space S with basis Bk into a
di↵erent vector space T with its own basis Ck.

ABi =
MX

k=1

akiCk. (1.80)

It then maps an arbitrary vector V = u1B1+ . . .+unBn in S into the vector

AV =
MX

k=1

 
nX

i=1

aki ui

!
Ck (1.81)

in T .

1.7 Inner products

Most of the vector spaces used by physicists have an inner product. A
positive-definite inner product associates a number (f, g) with every
ordered pair of vectors f and g in the vector space V and obeys, for every
three vectors f, g, h and numbers z, w with v = zg + wh, the three rules

(f, g) = (g, f)⇤ (1.82)

(f, v) = (f, z g + w h) = z (f, g) + w (f, h) (1.83)

(f, f) � 0 and (f, f) = 0 () f = 0. (1.84)

The first rule says that the inner product is hermitian. The second rule
says that it is linear in the second vector v = z g + w h of the pair. The
third rule says that it is positive definite. The first two rules imply that
(exercise 1.11) the inner product is anti-linear in the first vector of the pair

(z g + w h, f) = z⇤(g, f) + w⇤(h, f). (1.85)

A Schwarz inner product obeys the first two rules (1.82, 1.83) for an
inner product and the fourth (1.85) but only the first part of the third (1.84)

(f, f) � 0. (1.86)

This condition of nonnegativity implies (exercise 1.15) that a vector f of
zero length must be orthogonal to all vectors g in the vector space V

(f, f) = 0 =) (g, f) = 0 for all g 2 V. (1.87)

So a Schwarz inner product is almost positive definite.
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Inner products of 4-vectors can be negative. To accomodate them we
define an indefinite inner product without regard to positivity as one that
satisfies the first two rules (1.82 & 1.83) and therefore also the fourth rule
(1.85) and that instead of being positive definite is nondegenerate

(f, g) = 0 for all f 2 V =) g = 0. (1.88)

This rule says that only the zero vector is orthogonal to all the vectors of
the space. The positive-definite condition (1.84) is stronger than and implies
nondegeneracy (1.88) (exercise 1.14).

Apart from the indefinite inner products of 4-vectors in special and gen-
eral relativity, most of the inner products physicists use are Schwarz inner
products or positive-definite inner products. For such inner products, we can
define the norm or length |f | = k f k of a vector f as the square root of
the nonnegative inner product (f, f)

k f k=
p
(f, f). (1.89)

A vector f̂ = f/ k f k has unit norm and is said to be normalized. Two
measures of the distance between normalized vectors f and g are the norm
of their di↵erence and the Bures distance

D(f, g) = k f � g k and DB(f, g) = arccos(|(f, g)|) (1.90)

which are bounded by 0 k f � g k 2 and by 0  arccos(|(f, g)|)  ⇡/2.

Example 1.17 (Euclidian space) The space of real vectors U, V with n
components Ui, Vi forms an n-dimensional vector space over the real num-
bers with an inner product

(U, V ) =
nX

i=1

Ui Vi (1.91)

that is nonnegative when the two vectors are the same

(U,U) =
nX

i=1

Ui Ui =
nX

i=1

U2
i � 0 (1.92)

and vanishes only if all the components Ui are zero, that is, if the vector
U = 0. Thus the inner product (1.91) is positive definite. When (U, V ) is
zero, the vectors U and V are orthogonal.

Example 1.18 (Complex Euclidian Space) The space of complex vec-
tors with n components Ui, Vi forms an n-dimensional vector space over the
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complex numbers with inner product

(U, V ) =
nX

i=1

U⇤
i Vi = (V, U)⇤. (1.93)

The inner product (U,U) is nonnegative and vanishes

(U,U) =
nX

i=1

U⇤
i Ui =

nX

i=1

|Ui|2 � 0 (1.94)

only if U = 0. So the inner product (1.93) is positive definite. If (U, V ) is
zero, then U and V are orthogonal.

Example 1.19 (Complex Matrices) For the vector space of n⇥m complex
matrices A, B, . . . , the trace of the adjoint (1.32) of A multiplied by B is
an inner product

(A,B) = TrA†B =
nX

i=1

mX

j=1

(A†)jiBij =
nX

i=1

mX

j=1

A⇤
ijBij (1.95)

that is nonnegative when the matrices are the same

(A,A) = TrA†A =
nX

i=1

mX

j=1

A⇤
ijAij =

nX

i=1

mX

j=1

|Aij |2 � 0 (1.96)

and zero only when A = 0. So this inner product is positive definite.

A vector space with a positive-definite inner product (1.82–1.85) is called
an inner-product space, a metric space, or a pre-Hilbert space.
A sequence of vectors fn is a Cauchy sequence if for every ✏ > 0 there

is an integer N(✏) such that kfn � fmk < ✏ whenever both n and m exceed
N(✏). A sequence of vectors fn converges to a vector f if for every ✏ > 0
there is an integer N(✏) such that kf�fnk < ✏ whenever n exceeds N(✏). An
inner-product space with a norm defined as in (1.89) is complete if each of
its Cauchy sequences converges to a vector in that space. A Hilbert space
is a complete inner-product space. Every finite-dimensional inner-product
space is complete and so is a Hilbert space. An infinite-dimensional complete
inner-product space, such as the space of all square-integrable functions, also
is a Hilbert space (David Hilbert, 1862–1943).

Example 1.20 (Hilbert Space of Square-Integrable Functions) For the
vector space of functions (1.60), a natural inner product is

(f, g) =

Z b

a
dx f⇤(x) g(x). (1.97)
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The squared norm k f k of a function f(x) is

k f k2=
Z b

a
dx |f(x)|2. (1.98)

A function is square integrable if its norm is finite. The space of all square-
integrable functions is an inner-product space; it also is complete and so is
a Hilbert space.

Example 1.21 (Minkowski inner product) The Minkowski or Lorentz in-
ner product (p, x) of two 4-vectors p = (E/c, p1, p2, p3) and x = (ct, x1, x2, x3)
is p · x � Et . It is indefinite, nondegenerate (1.88), and invariant under
Lorentz transformations, and often is written as p · x or as p x. If p is the
4-momentum of a freely moving physical particle of mass m, then

p · p = p · p� E2/c2 = � c2m2  0. (1.99)

The Minkowski inner product satisfies the rules (1.82, 1.83, and 1.88), but
it is not positive definite, and it does not satisfy the Schwarz inequality
(Hermann Minkowski 1864–1909, Hendrik Lorentz 1853–1928).

Example 1.22 (Inner products in quantum mechanics) The probability
P (�| ) that a system in the state | i will be measured to be in the state
|�i is the absolute value squared of the inner product h�| i divided by the
squared norms of the two states

P (�| ) = |h�| i|2
h�|�ih | i . (1.100)

If the two states are normalized, then the probability is just the absolute
value squared of their inner product, P (�| ) = |h�| i|2.

1.8 Cauchy–Schwarz inequalities

For any two vectors f and g, the Schwarz inequality

(f, f) (g, g) � |(f, g)|2 (1.101)

holds for any Schwarz inner product (and so for any positive-definite in-
ner product). The condition (1.86) of nonnegativity ensures that for any
complex number � the inner product of the vector f � �g with itself is
nonnegative

(f � �g, f � �g) = (f, f)� �⇤(g, f)� �(f, g) + |�|2(g, g) � 0. (1.102)
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Now if (g, g) = 0, then for (f � �g, f � �g) to remain nonnegative for
all complex values of � it is necessary that (f, g) = 0 also vanish (exer-
cise 1.15). Thus if (g, g) = 0, then the Schwarz inequality (1.101) is trivially
true because both sides of it vanish. So we assume that (g, g) > 0 and set
� = (g, f)/(g, g). The inequality (1.102) then gives us

(f � �g, f � �g) =

✓
f � (g, f)

(g, g)
g, f � (g, f)

(g, g)
g

◆
= (f, f)� (f, g)(g, f)

(g, g)
� 0

which is the Schwarz inequality (1.101)

(f, f)(g, g) � |(f, g)|2. (1.103)

Taking the square root of each side, we have

k f kk g k� |(f, g)| (1.104)

(Hermann Schwarz 1843–1921).

Example 1.23 (Triangle inequality) The square of kf + gk is

kf + gk2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)

= kfk2 + (f, g) + (g, f) + kgk2  kfk2 + 2|(f, g)|+ kgk2.
(1.105)

The Schwarz inequality (1.101) says that |(f, g)|  kfkkgk. So we have

kf + gk2  kfk2 + 2kfkkgk+ kgk2 =
�
kfk+ kgk

�2
(1.106)

whose square root is the triangle inequality

kf + gk  kfk+ kgk. (1.107)

Equivalently with f = a�c and g = c�b, this is ka�bk  ka�ck+kc�bk.

Example 1.24 (Some Schwarz Inequalities) For the dot product of two
real 3-vectors r & R, the Cauchy-Schwarz inequality is

(r · r) (R ·R) � (r ·R)2 = (r · r) (R ·R) cos2 ✓ (1.108)

where ✓ is the angle between r and R.
The Schwarz inequality for two real n-vectors x is

(x · x) (y · y) � (x · y)2 = (x · x) (y · y) cos2 ✓ (1.109)

and it implies (exercise 1.16) that

kxk+ kyk � kx+ yk. (1.110)

For two complex n-vectors u and v, the Schwarz inequality is

(u⇤ · u) (v⇤ · v) � |u⇤ · v|2 = (u⇤ · u) (v⇤ · v) cos2 ✓ (1.111)
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and it implies (exercise 1.17) that

kuk+ kvk � ku+ vk. (1.112)

The inner product (1.97) of two complex functions f and g provides an-
other example

Z b

a
dx |f(x)|2

Z b

a
dx |g(x)|2 �

����
Z b

a
dx f⇤(x) g(x)

����
2

(1.113)

of the Schwarz inequality.

1.9 Linear independence and completeness

A set of n vectors V1, V2, . . . , Vn is linearly dependent over the real
(complex) numbers if there exist real (complex) numbers ci, not all zero,
such that the linear combination

c1V1 + . . .+ cnVn = 0 (1.114)

vanishes. A set of vectors is linearly independent if it is not linearly
dependent.

A set {Vi} of linearly independent vectors is maximal in a vector space S
if the addition of any other vector U in S to the set {Vi} makes the enlarged
set {U, Vi} linearly dependent.

A set of n linearly independent vectors V1, V2, . . . , Vn that is maximal
in a vector space S can represent any vector U in the space S as a linear
combination of its vectors, U = u1V1 + . . . + unVn. For if we enlarge the
maximal set {Vi} by including in it any vector U not already in it, then the
bigger set {U, Vi} will be linearly dependent. Thus there will be numbers c0,
c1, . . . , cn, not all zero, that make the sum

c0 U + c1V1 + . . .+ cnVn = 0 (1.115)

vanish. Now if c0 were 0, then the set {Vi} would be linearly dependent.
Thus c0 6= 0, and so we may divide by c0 and express the arbitrary vector
U as a linear combination of the vectors Vi

U = � 1

c0
(c1V1 + . . .+ cnVn) = u1V1 + . . .+ unVn (1.116)

with uk = �ck/c0. Thus a set of linearly independent vectors {Vi} that is
maximal in a space S can represent every vector U in S as a linear com-
bination U = u1V1 + . . . + unVn of its vectors. Such a set {Vi} of linearly
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independent vectors that is maximal in a space S is called a basis for S; it
spans S; it is a complete set of vectors in S.
The maximum number of linearly independent vectors in a space is the

dimension of the space.

1.10 Dimension of a vector space

If V1, . . . , Vn and W1, . . . , Wm are any two bases for a vector space S, then
n = m.
To see why, suppose that the n vectors C1, C2, . . . , Cn are complete in

a vector space S, and that the m vectors L1, L2, . . . , Lm in S are linearly
independent (Halmos, 1958, sec. 1.8). Since the C’s are complete, the set of
vectors Lm, C1, . . . , Cn is linearly dependent. So we can omit one of the C’s
and the remaining set Lm, C1, . . . , Ci�1, Ci+1, . . . , Cn still spans S. Repeat-
ing this argument, we find that the vectors

Lm�1, Lm, C1, . . . , Ci�1, Ci+1, . . . , Cn (1.117)

are linearly dependent, and that the vectors

Lm�1, Lm, C1, . . . , Ci�1, Ci+1, . . . , Cj�1, Cj+1, . . . , Cn (1.118)

still span S. We continue to repeat these steps until we run out of L’s or
C’s. If n were less than m, then we’d end up with a set of vectors Lk, . . . , Lm

that would be complete and therefore each of the vectors L1, . . . , Lk�1 would
have to be linear combinations of the vectors Lk, . . . , Lm. But the L’s by
assumption are linearly independent. So n � m. Thus if both the C’s and
the L’s are bases for the same space S, and so are both complete and linearly
independent in it, then both n � m and m � n. So all the bases of a vector
space consist of the same number of vectors. This number is the dimension
of the space.
The steps of the above demonstration stop for n = m when the m linearly

independent L’s have replaced the n complete C’s leaving us with n = m
linearly independent L’s that are complete. Thus in a vector space of n
dimensions, every set of n linearly independent vectors is complete and so
forms a basis for the space.

1.11 Orthonormal vectors

Suppose the vectors V1, V2, . . . , Vn are linearly independent. Then we can
make out of them a set of n vectors Ui that are orthonormal

(Ui, Uj) = �ij . (1.119)
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There are many ways to do this because there are many such sets of or-
thonormal vectors. We will use the Gram-Schmidt method. We set

U1 =
V1p

(V1, V1)
(1.120)

so the first vector U1 is normalized. Next we set u2 = V2+ c12U1 and require
that u2 be orthogonal to U1

0 = (U1, u2) = (U1, c12U1 + V2) = c12 + (U1, V2). (1.121)

Thus c12 = �(U1, V2), and so

u2 = V2 � (U1, V2)U1. (1.122)

The normalized vector U2 then is

U2 =
u2p

(u2, u2)
. (1.123)

We next set u3 = V3 + c13U1 + c23U2 and ask that u3 be orthogonal to U1

0 = (U1, u3) = (U1, c13U1 + c23U2 + V3) = c13 + (U1, V3) (1.124)

and also to U2

0 = (U2, u3) = (U2, c13U1 + c23U2 + V3) = c23 + (U2, V3). (1.125)

So c13 = �(U1, V3) and c23 = �(U2, V3), and we have

u3 = V3 � (U1, V3)U1 � (U2, V3)U2. (1.126)

The normalized vector U3 then is

U3 =
u3p

(u3, u3)
. (1.127)

We may continue in this way until we reach the last of the n linearly
independent vectors. We require the kth unnormalized vector uk

uk = Vk +
k�1X

i=1

cik Ui (1.128)

to be orthogonal to the k � 1 vectors Ui and find that cik = �(Ui, Vk) so
that

uk = Vk �
k�1X

i=1

(Ui, Vk)Ui. (1.129)
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The normalized vector then is

Uk =
ukp

(uk, uk)
. (1.130)

If we were to renumber the original vectors V1, . . . , Vn and repeat the Gram-
Schmidt process, we would get a di↵erent set of orthonormal vectors U 0

i in
general.
A basis is more useful if its vectors are orthonormal.

1.12 Outer products

From any two vectors f and g, we may make an outer-product operator
A that maps any vector h into the vector f multiplied by the inner product
(g, h)

Ah = f (g, h) = (g, h) f. (1.131)

The operator A is linear because for any vectors e, h and numbers z, w

A (z h+ w e) = (g, z h+ w e) f = z (g, h) f + w (g, e) f = z Ah+ wAe.
(1.132)

If f , g, and h are vectors with components fi, gi, and hi in some basis,
then the linear transformation (1.131) is

(Ah)i =
nX

j=1

Aij hj = fi

nX

j=1

g⇤j hj (1.133)

and in that basis A is the matrix with entries

Aij = fi g
⇤
j . (1.134)

A is the outer product of the column vector f and the row vector g⇤.

Example 1.25 (Outer Product) If in some basis the vectors f and g are

f =

✓
2
3i

◆
and g =

0

@
i
1
3i

1

A (1.135)

then their outer products are the matrices
✓
2
3i

◆�
�i 1 �3i

�
=

✓
�2i 2 �6i
3 3i 9

◆
(1.136)
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and
0

@
i
1
3i

1

A�2 �3i
�
=

0

@
2i 3
2 �3i
6i 9

1

A . (1.137)

Example 1.26 (Dirac’s outer products) Dirac’s notation for outer prod-
ucts is neat. If the vectors f = |fi and g = |gi are

|fi =

0

@
a
b
c

1

A and |gi =
✓

z
w

◆
(1.138)

then hf | = (a⇤ b⇤ c⇤) and hg| = (z⇤w⇤), and the outer products are

|fihg| =

0

@
az⇤ aw⇤

bz⇤ bw⇤

cz⇤ cw⇤

1

A and |gihf | =
✓
za⇤ zb⇤ zc⇤

wa⇤ wb⇤ wc⇤

◆
(1.139)

as well as

|fihf | =

0

@
aa⇤ ab⇤ ac⇤

ba⇤ bb⇤ bc⇤

ca⇤ cb⇤ cc⇤

1

A and |gihg| =
✓
zz⇤ zw⇤

wz⇤ ww⇤

◆
. (1.140)

1.13 Dirac notation

Outer products are important in quantum mechanics, and so Dirac invented
a notation for linear algebra that makes them easy to write. In his notation,
a vector f is a ket f = |fi. The new thing in his notation is the bra hg|. The
inner product of two vectors (g, f) is the bracket (g, f) = hg|fi. A matrix
element (g, cf) of an operator c then is (g, cf) = hg|c|fi in which the bra
and ket bracket the operator c.
In Dirac notation, an outer product like (1.131) Ah = (g, h) f = f (g, h)

reads A |hi = |fihg|hi, and the outer product A itself is A = |fihg|.
The bra hg| is the adjoint (also called the hermitian adjoint, the con-

jugate transpose, and the hermitian transpose) of the ket |gi, and the
ket |fi is the adjoint of the bra hf |

hg| = (|gi)† and |fi = (hf |)†, so hg|†† = hg| and |fi†† = |fi. (1.141)
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The adjoint of an outer product is

( z |fihg| )† = z⇤ |gihf |. (1.142)

In Dirac’s notation, the most general linear operator is an arbitrary linear
combination of outer products

A =
X

k`

zk` |kih`|. (1.143)

Its adjoint is

A† =
X

k`

z⇤k` |`ihk|. (1.144)

The adjoint of a ket |hi = A|fi is

(|hi)† =(A|fi)† =
 
X

k`

zk` |kih`|fi
!†

=
X

k`

z⇤k` hf |`ihk| = hf |A†. (1.145)

Before Dirac, bras were implicit in the definition of the inner product, but
they did not appear explicitly; there was no simple way to write the bra hg|
or the outer product |fihg|.
If the kets |ki form an orthonormal basis in an n-dimensional vector space,

then we can expand an arbitrary ket in the space as

|fi =
nX

k=1

ck|ki. (1.146)

Since the basis vectors are orthonormal h`|ki = �`k, we can identify the
coe�cients ck by forming the inner product

h`|fi =
nX

k=1

ck h`|ki =
nX

k=1

ck �`,k = c`. (1.147)

The original expasion (1.146) then must be

|fi =
nX

k=1

ck|ki =
nX

k=1

hk|fi |ki =
nX

k=1

|ki hk|fi =
 

nX

k=1

|ki hk|
!
|fi. (1.148)

Since this equation must hold for every vector |fi in the space, it follows that
the sum of outer products within the parentheses is the identity operator
for the space

I =
nX

k=1

|ki hk|. (1.149)
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Every set of kets |↵ji that forms an orthonormal basis h↵j |↵`i = �j` for the
space gives us an equivalent representation of the identity operator

I =
nX

j=1

|↵ji h↵j | =
nX

k=1

|ki hk|. (1.150)

These resolutions of the identity operator give for every vector |fi in the
space the expansions

|fi =
nX

j=1

|↵ji h↵j |fi =
nX

k=1

|ki hk|fi. (1.151)

Example 1.27 (Linear operators represented as matrices) The equations
(1.64–1.71) that relate linear operators to the matrices that represent them
are much clearer in Dirac’s notation. If the kets |Bki are n orthonormal basis
vectors, that is, if hBk|B`i = �k`, for a vector space S, then a linear operator
A acting on S maps the basis vector |Bii into (1.64)

A|Bii =
nX

k=1

|BkihBk|A|Bii =
nX

k=1

aki |Bki, (1.152)

and the matrix that represents the linear operator A in the |Bki basis is
aki = hBk|A|Bii. If a unitary operator U maps these basis vectors into
|B0

ki = U |Bki, then in this new basis the matrix that represents A as in
(1.145) is

a0`i = hB0
`|A|B0

ii = hB`|U †AU |Bii

=
nX

j=1

nX

k=1

hB`|U †|BjihBj |A|BkihBk|U |Bii =
nX

j=1

nX

k=1

u†`jajkuki
(1.153)

or a0 = u† a u in matrix notation.

Example 1.28 (Inner-product rules) In Dirac’s notation, the rules (1.82—
1.85), of a positive-definite inner product are

hf |gi =hg|fi⇤

hf |z1g1 + z2g2i = z1hf |g1i+ z2hf |g2i
hz1f1 + z2f2|gi = z⇤1hf1|gi+ z⇤2hf2|gi

hf |fi � 0 and hf |fi = 0 () f = 0.

(1.154)

States in Dirac notation often are labeled | i or by their quantum numbers
|n, l,mi, and one rarely sees plus signs or complex numbers or operators
inside bras or kets. But one should.
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Example 1.29 (Gram Schmidt) In Dirac notation, the formula (1.129)
for the kth orthogonal linear combination of the vectors |V`i is

|uki = |Vki �
k�1X

i=1

|UiihUi|Vki =
 
I �

k�1X

i=1

|UiihUi|
!
|Vki (1.155)

and the formula (1.130) for the kth orthonormal linear combination of the
vectors |V`i is

|Uki =
|ukip
huk|uki

. (1.156)

The vectors |Uki are not unique; they vary with the order of the |Vki.

Vectors and linear operators are abstract. The numbers we compute with
are inner products like hg|fi and hg|A|fi. In terms of n orthonormal basis
vectors |ji with fj = hj|fi and g⇤j = hg|ji, we can use the expansion (1.149)
of the identity operator to write these inner products as

hg|fi = hg|I|fi =
nX

j=1

hg|jihj|fi =
nX

j=1

g⇤j fj

hg|A|fi = hg|IAI|fi =
nX

j,`=1

hg|jihj|A|`ih`|fi =
nX

j,`=1

g⇤j Aj` f`

(1.157)

in which Aj` = hj|A|`i. We often gather the inner products f` = h`|fi into
a column vector f with components f` = h`|fi

f =

0

BBB@

h1|fi
h2|fi
...

hn|fi

1

CCCA
=

0

BBB@

f1
f2
...
fn

1

CCCA
(1.158)

and the hj|A|`i into a matrix A with matrix elements Aj` = hj|A|`i. If we
also line up the inner products hg|ji = hj|gi⇤ in a row vector that is the
transpose of the complex conjugate of the column vector g

g† = (h1|gi⇤, h2|gi⇤, . . . , hn|gi⇤) = (g⇤1, g
⇤
2, . . . , g

⇤
n) , (1.159)

then we can write inner products in matrix notation as hg|fi = g†f and as
hg|A|fi = g†Af .

One can compute the inner product hg|fi of two vectors f and g by doing
the sum (1.157) of g⇤j fj over the index j only if one knows their components
fj and gj which are their inner products fj = hj|fi and gj = hj|gi with
the orthonormal states |ji of some basis. Thus an inner product implies
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the existence of an orthonormal basis and a representation of the identity
operator

I =
nX

j=1

|jihj|. (1.160)

If we switch to a di↵erent basis, say from |ki’s to |↵ki’s, then the com-
ponents of the column vectors change from fk = hk|fi to f 0

k = h↵k|fi, and
similarly those of the row vectors g† and of the matrix A change, but the
bras, the kets, the linear operators, and the inner products hg|fi and hg|A|fi
do not change because the identity operator is basis independent (1.150)

hg|fi =
nX

k=1

hg|kihk|fi =
nX

k=1

hg|↵kih↵k|fi

hg|A|fi =
nX

k,`=1

hg|kihk|A|`ih`|fi =
nX

k,`=1

hg|↵kih↵k|A|↵`ih↵`|fi.
(1.161)

Dirac’s outer products show how to change from one basis to another.
The sum of outer products |↵kihk| is a unitary operator (Section 1.17)

U =
nX

k=1

|↵kihk| (1.162)

that maps the ket |`i of one orthonormal basis into that |↵`i of another

U |`i =
nX

k=1

|↵kihk|`i =
nX

k=1

|↵ki �k` = |↵`i. (1.163)

Example 1.30 (Simple change of basis) If the ket |↵ki of the new basis
is simply |↵ki = |k + 1i with |↵ni = |n + 1i ⌘ |1i, then the operator that
maps the n kets |ki into the kets |↵ki is

U =
nX

k=1

|↵kihk| =
nX

k=1

|k + 1ihk|. (1.164)

The square U2 of U also changes the basis; it sends |ki to |k + 2i. The set
of operators U ` for ` = 1, 2, . . . , n forms a group known as Zn.
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1.14 Adjoints of operators

The most general linear operator (1.143) on an n-dimensional vector space
is a sum of outer products z |kih`| in which z is a complex number and the
kets |ki and |`i are two of the n orthonormal kets that make up a basis for
the space. The adjoint (1.142) of this basic linear operator is

(z |kih`|)† = z⇤ |`ihk|. (1.165)

Thus with z = hk|A|`i, the most general linear operator on the space is

A = IAI =
nX

k,`=1

|kihk|A|`ih`| (1.166)

and its adjoint A† is the operator IA†I

A† =
nX

k,`=1

|`ih`|A†|kihk| =
nX

k,`=1

|`ihk|A|`i⇤hk|. (1.167)

It follows that h`|A†|ki = hk|A|`i⇤ so that the matrix A†
k` that represents A

†

in this basis is

A†
`k = h`|A†|ki = hk|A|`i⇤ = A⇤

k` = (A⇤T)`k (1.168)

in agreement with our definition (1.32) of the adjoint of a matrix as the
transpose of its complex conjugate, A† = A⇤T. We also have

hg|A†fi = hg|A†|fi = hf |A|gi⇤ = hf |Agi⇤ = hAg|fi. (1.169)

The adjoint of an adjoint is by (1.165)
h
(z |kih`|)†

i†
= [z⇤ |`ihk|]† = z |kih`| (1.170)

no change at all. This also follows from the matrix formula (1.168) because
both (A⇤)⇤ = A and (AT)T = A, and so

⇣
A†
⌘†

=
�
A⇤T�⇤ T = A (1.171)

the adjoint of the adjoint of a matrix is the original matrix.
Before Dirac, the adjoint A† of a linear operator A was defined by

(g,A†f) = (Ag, f) = (f,A g)⇤. (1.172)

This definition also implies that A†† = A since

(g,A††f) = (A†g, f) = (f,A†g)⇤ = (Af, g)⇤ = (g,Af). (1.173)

We also have (g,Af) = (g,A††f) = (A†g, f).
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1.15 Self-adjoint or hermitian linear operators

An operator A that is equal to its adjoint A† = A is self adjoint or hermi-
tian. In view of (1.168), the matrix elements of a self-adjoint linear operator
A satisfy hk|A†|`i = h`|A|ki⇤ = hk|A|`i in any orthonormal basis. So a ma-
trix that represents a hermitian operator is equal to the transpose of its
complex conjugate

Ak` = hk|A|`i = hk|A†|`i = h`|A|ki⇤ = A⇤T
k` = A†

k`. (1.174)

We also have

hg|Afi = hg|A |fi = hAg|fi = hf |Agi⇤ = hf |A |gi⇤ = hAf |gi⇤ (1.175)

and in pre-Dirac notation

(g,A f) = (Ag, f) = (f,A g)⇤ = (Af, g)⇤. (1.176)

A matrix Aij that is real and symmetric or imaginary and antisym-
metric is hermitian. But a self-adjoint linear operator A that is represented
by a matrix Aij that is real and symmetric (or imaginary and antisymmet-
ric) in one orthonormal basis will not in general be represented by a matrix
that is real and symmetric (or imaginary and antisymmetric) in a di↵erent
orthonormal basis, but it will be represented by a hermitian matrix in every
orthonormal basis.
A ket |a0i is an eigenvector of a linear operator A with eigenvalue

a0 if A|a0i = a0|a0i. As we’ll see in section 1.31, hermitian matrices have
real eigenvalues and complete sets of orthonormal eigenvectors. Hermitian
operators and matrices represent physical variables in quantum mechanics.

Example 1.31 (Fierz identities for n ⇥ n hermitian matrices) The n2

n⇥n hermitian matrices ta form a vector space with an inner product ha|bi
(section 1.7) defined by the trace (1.25) ha|bi = Tr(ta tb). One can use the
Gram-Schmidt method (section 1.11) to make them orthonormal, so that

ha|bi = Tr(ta tb) =
nX

i,k=1

taik t
b
ki = �ab. (1.177)

Then the sum of their n2 outer products (1.25) is the identity matrix of the
n2-dimensional vector space

0

@
n2X

a=1

|aiha|

1

A

ij,k`

=
n2X

a=1

taij t
a
k` = Iik,`j = �i` �kj (1.178)
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because

tbij = (|bi)ij =
n2X

a=1

(|ai)ijha|bi =
n2X

a=1

taijTr(t
a tb) =

n2X

a=1

nX

k,`=1

taijt
a
k` t

b
`k. (1.179)

(Markus Fierz, 1912–2006)

1.16 Real, symmetric linear operators

In quantum mechanics, we usually consider complex vector spaces, that is,
spaces in which the vectors |fi are complex linear combinations

|fi =
nX

k=1

zk |ki (1.180)

of complex orthonormal basis vectors |ii.
But real vector spaces also are of interest. A real vector space is a vector

space in which the vectors |fi are real linear combinations

|fi =
nX

k=1

xk |ki (1.181)

of real orthonormal basis vectors, x⇤k = xk and |ki⇤ = |ki.
A real linear operator A on a real vector space

A =
nX

k,`=1

|kihk|A|`ih`| =
nX

k,`=1

|kiAk`h`| (1.182)

is represented by a real matrix A⇤
k` = Ak`. A real linear operator A that is self

adjoint on a real vector space satisfies the condition (1.176) of hermiticity
but with the understanding that complex conjugation has no e↵ect

(g,A f) = (Ag, f) = (f,A g)⇤ = (f,A g). (1.183)

Thus its matrix elements are symmetric, hg|A|fi = hf |A|gi. Since A is her-
mitian as well as real, the matrix Ak` that represents it (in a real basis) is
real and hermitian, and so is symmetric Ak` = A⇤

`k = A`k.

1.17 Unitary operators

A unitary operator U is one whose adjoint is its inverse

U U † = U † U = I. (1.184)
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Any operator that changes from one orthonormal basis |ki to another |↵ki

U =
nX

k=1

|↵kihk| (1.185)

is unitary since

UU † =
nX

k=1

|↵kihk|
nX

`=1

|`ih↵`| =
nX

k,`=1

|↵kihk|`ih↵`|

=
nX

k,`=1

|↵ki�k,`h↵`| =
nX

k=1

|↵kih↵k| = I

(1.186)

as well as

U †U =
nX

`=1

|`ih↵`|
nX

k=1

|↵kihk| =
nX

k=1

|kihk| = I. (1.187)

A unitary operator maps every orthonormal basis |ki into another orthonor-
mal basis |↵ki. For if |↵ki = U |ki, then the vectors |↵ki are orthonormal
h↵k|↵`i = �k,` (exercise 1.22). They also are complete because they provide
a resolution of the identity operator

nX

k=1

|↵kih↵k| =
nX

k=1

U |kihk|U † = U I U † = U U † = I. (1.188)

If we multiply the ket |↵ki = U |ki by the bra hk| and then sum over the
index k, we get

nX

k=1

|↵kihk| =
nX

k=1

U |kihk| = U
nX

k=1

|kihk| = U. (1.189)

An operator U is unitary if and only if it maps every orthonormal basis into
an orthonormal basis.
The matrix Uk0k = hk0|U |ki

hk0|U |ki = hk0|
nX

k00=1

|↵k00ihk00|ki = hk0|↵ki (1.190)

is unitary

nX

k=1

Uk0kU
⇤
k00k =

nX

k=1

hk0|↵kih↵k|k00i = hk0|k00i = �k0,k00 . (1.191)

Inner products do not change under unitary transformations because
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hg|fi = hg|U † U |fi = hUg|U |fi = hUg|Ufi which in pre-Dirac notation
is (g, f) = (g, U † Uf) = (Ug, Uf).
Unitary matrices have unimodular determinants, | detU | = 1, because

the determinant of the product of two matrices is the product of their de-
terminants (1.231) and because transposition doesn’t change the value of a
determinant (1.214) and because the inverse of a unitary matrix is its inverse
U † = U�1

1 = det I = det(UU�1) = det(UU †) = detU detU †

= detU(det(UT))⇤ = detU(detU)⇤ = | det(U)|2.
(1.192)

A unitary matrix that is real is orthogonal and satsfies

OOT = OTO = I. (1.193)

1.18 Hilbert spaces

We have mainly been talking about linear operators that act on finite-
dimensional vector spaces and that can be represented by matrices. But
infinite-dimensional vector spaces and the linear operators that act on them
play central roles in electrodynamics and quantum mechanics. For instance,
the Hilbert space H of all wave functions  (x, t) that are square integrable
over three-dimensional space at all times t is of infinite dimension.
In one space dimension, the state |x0i represents a particle at position x0

and is an eigenstate of the hermitian position operator x with eigenvalue
x0, that is, x|x0i = x0|x0i. These states form a basis that is orthogonal in
the sense that hx|x0i = 0 for x 6= x0 and normalized in the sense that
hx|x0i = �(x � x0) in which �(x � x0) is Dirac’s delta function. The delta
function �(x�x0) actually is a functional �x0 that maps any suitably smooth
function f into its value �x0 [f ] at x0

�x0 [f ] =

Z
�(x� x0) f(x) dx = f(x0). (1.194)

Another basis for the Hilbert space of one-dimensional quantummechanics
is made of the states |pi of well-defined momentum. The state |p0i represents
a particle or system with momentum p0. It is an eigenstate of the hermitian
momentum operator p with eigenvalue p0, that is, p|p0i = p0|p0i. The mo-
mentum states also are orthonormal in Dirac’s sense, hp|p0i = �(p� p0).
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The operator that translates a system in space by a distance a is

U(a) =

Z
|x+ aihx| dx. (1.195)

It maps the state |x0i to the state |x0 + ai and is unitary (exercise 1.23).
Remarkably, this translation operator is an exponential of the momentum
operator U(a) = exp (�i p a/~) in which ~ = h/2⇡ = 1.054 ⇥ 10�34 Js is
Planck’s constant divided by 2⇡.

In two-dimensions with basis states |x, yi that are orthonormal in Dirac’s
sense hx, y|x0, y0i = �(x� x0)�(y � y0), the unitary operator

U(✓) =

Z
|x cos ✓ � y sin ✓, x sin ✓ + y cos ✓ihx, y| dxdy (1.196)

rotates a system in space by the angle ✓. This rotation operator is the
exponential U(✓) = exp(�i ✓Lz/~) in which the z component of the angular
momentum is Lz = x py � y px.
We may carry most of our intuition about matrices over to these unitary

transformations that change from one infinite basis to another. But we must
keep in mind that infinite sums and integrals do not always converge.

1.19 Antiunitary, antilinear operators

Certain maps on states | i ! | 0i, such as those involving time reversal,
are implemented by operators K that are antilinear

K (z + w�) = K (z| i+ w|�i) = z⇤K| i+ w⇤K|�i = z⇤K + w⇤K�
(1.197)

and antiunitary

(K�,K ) = hK�|K i = (�, )⇤ = h�| i⇤ = h |�i = ( ,�) . (1.198)

The adjoint K† of an antiunitary operator K is defined by hK†�| i =
h�|K| i⇤ so that hK†K�| i = hK�|K i⇤ = h�| i⇤⇤ = h�| i, which en-
sures that that K†K = KK† = 1.

1.20 Symmetry in quantum mechanics

In quantum mechanics, a symmetry is a map of states | i ! | 0i and
|�i ! |�0i that preserves probabilities

|h�0| 0i|2 = |h�| i|2. (1.199)
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Eugene Wigner (1902–1995) showed that every symmetry in quantum me-
chanics can be represented either by an operator U that is linear and unitary
or by an operator K that is antilinear and antiunitary. The antilinear, antiu-
nitary case occurs when a symmetry involves time reversal. Most symmetries
are represented by operators that are linear and unitary. Unitary operators
are of great importance in quantum mechanics. They represent rotations,
translations, Lorentz transformations, and internal-symmetry transforma-
tions.

1.21 Determinants

The determinant of a 2⇥ 2 matrix A

detA = |A| = A11A22 �A21A12 (1.200)

is a sum of signed products of an element of one row and column multiplied
by an element of the other row and column. The sign of each product is de-
termined by the order of the indexes, specifically by the 2⇥2 antisymmetric
(eij = �eji ) matrix e12 = 1 = �e21 with e11 = e22 = 0

detA =
2X

i=1

2X

j=1

eijAi1Aj2 =
2X

i=1

2X

j=1

eijA1iA2j . (1.201)

It’s also true that

ek` detA =
2X

i=1

2X

j=1

eijAikAj`. (1.202)

Example 1.32 (Area of a parallelogram) Two 2-vectors V = (V1, V2) and
W = (W1,W2) define a parallelogram whose area is the absolute value of
the 2⇥ 2 determinant

area(V,W ) =

���� det
✓
V1 V2

W1 W2

◆���� = |V1W2 � V2W1 | . (1.203)

To check this formula, rotate the coordinates so that the 2-vector V runs
from the origin along the x-axis. Then V2 = 0, and the determinant is V1W2

which is the base V1 of the parallelogram times its height W2.

The determinant of a 3⇥ 3 matrix A

detA =
3X

i,j,k=1

eijk Ai1Aj2Ak3 =
3X

i,j,k=1

eijk A1iA2jA3k (1.204)
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is a sum of signed products of elements Aik in which every row index i and
every column index k occurs exactly once. The sign of each product is deter-
mined by the order of the indexes, specifically by the totally antisymmetric
Levi-Civita symbol eijk whose nonzero values are

e123 = e231 = e312 = 1 and e213 = e132 = e321 = � 1. (1.205)

The symbol eijk vanishes whenever an index appears twice

e111 = e112 = e113 = e222 = e221 = e223 = e333 = e331 = e332 = 0. (1.206)

Doing the first of the sums (1.204) over i explicitly, we get

detA =
3X

i=1

Ai1

3X

j,k=1

eijk Aj2Ak3

= A11

3X

j,k=2

e1jkAj2Ak3 +A21

3X

j,k=1, 6=2

e2jkAj2Ak3 +A31

2X

j,k=1

e3jkAj2Ak3

= A11 (A22A33 �A32A23) +A21 (A32A13 �A12A33)

+A31 (A12A23 �A22A13) . (1.207)

The minor Mi` of the matrix A is the 2 ⇥ 2 determinant of the matrix
A without row i and column `, and the cofactor Ci` is the minor Mi`

multiplied by (�1)i+`. Thus the determinant detA is the sum over i

detA = A11(�1)2 (A22A33 �A32A23) +A21(�1)3 (A12A33 �A32A13)

+A31(�1)4 (A12A23 �A22A13) (1.208)

= A11C11 +A21C21 +A31C31

of Ai1 multiplied by its cofactor Ci1

C11 = (�1)2M11 = A22A33 �A23A32

C21 = (�1)3M21 = A32A13 �A12A33 (1.209)

C31 = (�1)4M31 = A12A23 �A22A13.

Example 1.33 (Volume of a parallelepiped) The determinant of a 3 ⇥ 3
matrix is the dot product of the vector of its first row with the cross-product



36 Linear Algebra

of the vectors of its second and third rows
������

U1 U2 U3

V1 V2 V3

W1 W2 W3

������
=

3X

ijk=1

eijk UiVjWk =
3X

i=1

Ui (V ⇥ W )i = U · (V ⇥ W ).

(1.210)
The absolute value of this scalar triple product is the volume of the paral-
lelepiped defined by U, V, and W as one can see by placing the parallelepiped
so the vector U runs from the origin along the x axis. The 3⇥3 determinant
(1.210) then is U1(V2W3 � V3W2) which is the height of the parallelepiped
times the area (1.203) of its base.

Laplace used the totally antisymmetric symbol ei1i2...in with n indices and
with e123...n = 1 to define the determinant of an n⇥ n matrix A as

detA =
nX

i1i2...in=1

ei1i2...inAi11Ai22 . . . Ainn (1.211)

in which the sums over i1 . . . in run from 1 to n. In terms of cofactors, two
forms of his expansion of this determinant are a sum over the row index i
for an arbitrary fixed column index k and a sum over the column index k
for a fixed row index i

detA =
nX

i=1

AikCik =
nX

k=1

AikCik. (1.212)

As for a 3 ⇥ 3 matrix, the cofactor Cik is (�1)i+kMik in which the minor
Mik is the determinant of the (n� 1)⇥ (n� 1) matrix A without its ith row
and kth column. It’s also true that

ek1k2...kn detA =
nX

i1i2...in=1

ei1i2...inAi1k1Ai2k2 . . . Ainkn

=
nX

i1i2...in=1

ei1i2...inAk1i1Ak2i2 . . . Aknin .

(1.213)

In particular, since e12...n = 1, the determinant of the transpose of a matrix
is equal to the determinant (1.211) of the matrix

detAT =
nX

i1i2...in=1

ei1i2...inA1i1A2i2 . . . Anin = detA. (1.214)

The interchange A ! AT of the rows and columns of a matrix has no e↵ect
on its determinant.
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The key feature of a determinant is that it is an antisymmetric combina-
tion of products of the elements Aik of a matrix A. One implication of this
antisymmetry is that the interchange of any two rows or any two columns
changes the sign of the determinant. Another is that if one adds a multiple
of one column to another column, for example a multiple xAi2 of column 2
to column 1, then the determinant

detA0 =
nX

i1i2...in=1

ei1i2...in (Ai11 + xAi12)Ai22 . . . Ainn (1.215)

is unchanged. The reason is that the extra term � detA vanishes

� detA =
nX

i1i2...in=1

x ei1i2...in Ai12Ai22 . . . Ainn = 0 (1.216)

because it is proportional to a sum of products of a factor ei1i2...in that is
antisymmetric in i1 and i2 and a factor Ai12Ai22 that is symmetric in these
indices. For instance, when i1 and i2 are 5 & 7 and 7 & 5, the two terms
cancel

e57...inA52A72 . . . Ainn + e75...inA72A52 . . . Ainn = 0 (1.217)

because e57...in = �e75...in . (Pierre-Simon Laplace, 1749–1827)
By repeated additions of x2Ai2, x3Ai3, and so forth to Ai1, we can change

the first column of the matrix A to a linear combination of all the columns

Ai1 �! Ai1 +
nX

k=2

xkAik (1.218)

without changing detA. In this linear combination, the coe�cients xk are
arbitrary. The analogous operation with arbitrary yk

Ai` �! Ai` +
nX

k=1,k 6=`

ykAik (1.219)

replaces the `th column by a linear combination of all the columns without
changing detA.
Suppose that the columns of an n ⇥ n matrix A are linearly dependent

(section 1.9), so that the linear combination of columns

nX

k=1

Aik yk = 0 for i = 1, . . . n (1.220)

vanishes for some coe�cients yk not all zero. If yp 6= 0, then by adding to col-
umn p the linear combinations y0k = (yk/yp)Aik of all the other columns, we
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could make the modified elements A0
ip of column p vanish without changing

detA. But then detA would vanish by definition (1.211). Thus the deter-
minant of any matrix whose columns are linearly dependent must
vanish.
Now suppose that the columns of an n⇥nmatrix are linearly independent.

Then the determinant of the matrix cannot vanish because any linearly
independent set of n vectors in a vector space of n dimensions is complete
(section 1.9). Thus if the columns of a matrix A are linearly independent
and therefore complete, some linear combination of all columns 2 through
n when added to column 1 will convert column 1 into a nonzero multiple
of the n-dimensional column vector (1, 0, 0, . . . 0), say (c1, 0, 0, . . . 0). Similar
operations will convert column 2 into a nonzero multiple of the column vector
(0, 1, 0, . . . 0), say (0, c2, 0, . . . 0). Continuing in this way, we may convert the
matrix A to a matrix with nonzero entries ci along the main diagonal and
zeros everywhere else. The determinant detA then is the product c1c2 . . . cn
of the nonzero diagonal entries ci’s, and so detA cannot vanish.
We may extend these arguments to the rows of a matrix. The addition to

row k of a linear combination of the other rows

Aki �! Aki +
nX

`=1,` 6=k

z`A`i (1.221)

does not change the value of the determinant. In this way, one may show
that the determinant of a matrix vanishes if and only if its rows are linearly
dependent. The reason why these results apply to the rows as well as to
the columns is that the determinant of a matrix A may be defined either in
terms of the columns or in terms of the rows as in the definitions (1.211)
and 1.213). These and other properties of determinants follow from a study
of permutations (section 11.13). Detailed proofs are in (Aitken, 1959).
Let us return for a moment to Laplace’s expansion (1.212) of the deter-

minant detA of an n⇥ n matrix A as a sum of AikCik over the row index i
with the column index k held fixed

detA =
nX

i=1

AikCik =
nX

i=1

AkiCki (1.222)

in order to prove that

�k` detA =
nX

i=1

AikCi` =
nX

i=1

AkiC`i. (1.223)

For k = `, this formula just repeats Laplace’s expansion (1.222). But for
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k 6= `, it is Laplace’s expansion for the determinant of a matrix that has
two copies of its kth column. Since the determinant of a matrix with two
identical columns vanishes, the rule (1.223) also is true for k 6= `.

This rule (1.223) provides a formula for the inverse of a matrix A whose
determinant does not vanish. Such matrices are said to be nonsingular.
The inverse A�1 of an n ⇥ n nonsingular matrix A is the transpose of the
matrix of cofactors divided by the determinant of the matrix

�
A�1

�
`i
=

Ci`

detA
or A�1 =

CT

detA
. (1.224)

To verify this formula, we use it for A�1 in the product A�1A and note that
by (1.223) the `kth entry of the product A�1A is just �`k

�
A�1A

�
`k

=
nX

i=1

�
A�1

�
`i
Aik =

nX

i=1

Ci`

detA
Aik = �`k. (1.225)

Example 1.34 (Inverting a 2 ⇥ 2 Matrix) Our formula (1.224) for the
inverse of the general 2 ⇥ 2 matrix

A =

✓
a b
c d

◆
(1.226)

gives

A�1 =
1

ad� bc

✓
d �b
�c a

◆
(1.227)

which is the correct inverse as long as ad 6= bc.

The simple example of matrix multiplication
0

@
a b c
d e f
g h i

1

A

0

@
1 x y
0 1 z
0 0 1

1

A =

0

@
a xa+ b ya+ zb+ c
d xd+ e yd+ ze+ f
g xg + h yg + zh+ i

1

A (1.228)

shows that the operations (1.219) on columns that don’t change the value of
the determinant can be written as matrix multiplication from the right by
a matrix that has unity on its main diagonal and zeros below. Now consider
the matrix product

✓
A 0
�I B

◆✓
I B
0 I

◆
=

✓
A AB
�I 0

◆
(1.229)

in which A and B are n ⇥ n matrices, I is the n ⇥ n identity matrix, and
0 is the n ⇥ n matrix of all zeros. The second matrix on the left-hand side
has unity on its main diagonal and zeros below, and so it does not change
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the value of the determinant of the matrix to its left, which then must equal
that of the matrix on the right-hand side:

det

✓
A 0
�I B

◆
= det

✓
A AB
�I 0

◆
. (1.230)

By using Laplace’s expansion (1.212) along the first column to evaluate the
determinant on the left-hand side and his expansion along the last row to
compute the determinant on the right-hand side, one finds that the de-
terminant of the product of two matrices is the product of the
determinants

detA detB = detAB. (1.231)

Example 1.35 (Two 2 ⇥ 2 Matrices) When the matrices A and B are
both 2 ⇥ 2, the two sides of (1.230) are

det

✓
A 0
�I B

◆
= det

0

BB@

a11 a12 0 0
a21 a22 0 0
�1 0 b11 b12
0 �1 b21 b22

1

CCA (1.232)

= a11a22 detB � a21a12 detB = detA detB

and

det

✓
A AB
�I 0

◆
= det

0

BB@

a11 a12 (ab)11 (ab)12
a21 a22 (ab)21 (ab)22
�1 0 0 0
0 �1 0 0

1

CCA (1.233)

= (�1)C42 = (�1)(�1) detAB = detAB

and so they give the product rule detA detB = detAB.

Often one uses the notation |A| = detA to denote a determinant. In this
more compact notation, the obvious generalization of the product rule is

|ABC . . . Z| = |A||B| . . . |Z|. (1.234)

The product rule (1.231) implies that det
�
A�1

�
is 1/ detA since

1 = det I = det
�
AA�1

�
= detA det

�
A�1

�
. (1.235)

Example 1.36 (Derivative of the logarithm of a determinant) We see from
our formula (1.222) for detA that its derivative with respect to any given
element Aik is the corresponding cofactor Cik

@ detA

@Aik
= Cik (1.236)
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because the cofactors Cij and Cjk for all j are independent of Aik. Thus the
derivative of the logarithm of this determinant with respect to any parameter
� is the trace of A�1@A/@�

@ ln detA

@�
=

1

detA

X

ik

@ detA

@Aik

@Aik

@�
=
X

ik

Cik

detA

@Aik

@�

=
X

ik

A�1
ki

@Aik

@�
= Tr

✓
A�1@A

@�

◆
.

(1.237)

Example 1.37 (Numerical Tricks) Adding multiples of rows to other rows
does not change the value of a determinant, and interchanging two rows only
changes a determinant by a minus sign. So we can use these operations,
which leave the absolute values of determinants invariant, to make a matrix
upper triangular, a form in which its determinant is just the product of
the factors on its diagonal. Thus to make the matrix

A =

0

@
1 2 1
�2 �6 3
4 2 �5

1

A (1.238)

upper triangular, we add twice the first row to the second row
0

@
1 2 1
0 �2 5
4 2 �5

1

A

and then subtract four times the first row from the third
0

@
1 2 1
0 �2 5
0 �6 �9

1

A . (1.239)

Next, we subtract three times the second row from the third
0

@
1 2 1
0 �2 5
0 0 �24

1

A .

We now find as the determinant of A the product of its diagonal elements:

|A| = 1(�2)(�24) = 48. (1.240)
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Example 1.38 (Using Matlab) The Matlab command to make the matrix
(1.238) is A = [ 1 2 1; -2 -6 3; 4 2 -5 ] . The command d = det(A)
gives its determinant, d = 48, and Ainv = A(�1) gives its inverse

Ainv = 0.5000 0.2500 0.2500

0.0417 -0.1875 -0.1042

0.4167 0.1250 -0.0417 .

The permanent of a square n⇥ n matrix Aik is the sum over all permu-
tations 1, 2, . . . , n ! s1, s2, . . . , sn of the products As11As22 · · ·Asnn

perm(A) =
X

s

As11As22 · · ·Asnn. (1.241)

The permanent is the determinant without the minus signs.
Applied mathematicians have developed much faster ways of computing

determinants and matrix inverses than those (1.212 & 1.224) due to Laplace.
Sage, Octave, Matlab, Maple, Mathematica, and Python use these modern
techniques, which are freely available as programs in C and fortran from
www.netlib.org/lapack. One of these techniques is the LU decomposition.

1.22 LU Decomposition

In 1938 Tadeusz Banachiewicz demonstrated the utility of factoring a square
matrix A into the product A = LU of a lower-triangular matrix L, with 1’s
on its main diagonal, and an upper-triangular matrix U

A =

0

BBB@

1 0 0 0 · · ·
L21 1 0 0 · · ·
L31 L32 1 0 · · ·
...

...
...

...
. . .

1

CCCA

0

BBB@

U11 U12 U13 U14 · · ·
0 U22 U23 U24 · · ·
0 0 U33 U34 · · ·
...

...
...

...
. . .

1

CCCA
. (1.242)

The product rule (1.231) says that detA = det(LU) = detL detU . But
detL = 1, and detU = U11U22 · · ·Unn; so detA = U11U22 · · ·Unn.

Example 1.39 (A 2⇥ 2 LU decomposition) The LU decomposition of a
2⇥ 2 matrix is

A =

✓
a b
c d

◆
=

✓
1 0
z 1

◆✓
↵ �
0 �

◆
=

✓
↵ �
z↵ z� + �

◆
. (1.243)
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Comparing matrix elements, we see that ↵ = a, � = b, z = c/↵ = c/a, and
� = d� z� = d� c�/a = d� bc/a. So the LU decomposition of A is

A =

✓
1 0
c/a 1

◆✓
a b
0 d� bc/a

◆
. (1.244)

Thus detA = a(d� bc/a).

1.23 Jacobians

When one changes variables in a multiple integral from coordinates x1, x2
and area element dx1dx2, one must find the new element of area in terms
of the new variables y1, y2. If x̂1 and x̂2 are unit vectors in the x1 and x2
directions, then as the new coordinates (y1, y2) change by dy1 and dy2, the
point they represent moves by

dy
1 =

✓
@x1
@y1

x̂1 +
@x2
@y1

x̂2

◆
dy1 and by dy

2 =

✓
@x1
@y2

x̂1 +
@x2
@y2

x̂2

◆
dy2.

(1.245)
These vectors, dy1 and dy

2 define a parallelogram whose area (1.203) is the
absolute value of a determinant

area(dy1,dy2) =

��������
det

0

BB@

@x1
@y1

@x2
@y1

@x1
@y2

@x2
@y2

1

CCA

��������
dy1 dy2. (1.246)

The determinant itself is a jacobian

J = J(x/y) =
@(x1, x2)

@(y1, y2)
= det

0

BB@

@x1
@y1

@x2
@y1

@x1
@y2

@x2
@y2

1

CCA . (1.247)

The two equal integrals are
ZZ

Rx

f(x1, x2) dx1dx2 =

ZZ

Ry

f � x(y1, y2)
����
@(x1, x2)

@(y1, y2)

���� dy1dy2 (1.248)

in which f �x(y1, y2) = f(x1(y1, y2), x2(y1, y2)) and Rx and Ry are the same
region in the two coordinate systems.
In 3 dimensions, with j = 1, 2, and 3, the 3 vectors

dy
j =

✓
@x1
@yj

x̂1 +
@x2
@yj

x̂2 +
@x3
@yj

x̂3

◆
dyj (1.249)
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define a parallelepiped whose volume (1.210) is the absolute value of the
determinant

volume(dy1,dy2,dy3) =

������������

det

0

BBBBBB@

@x1
@y1

@x2
@y1

@x3
@y1

@x1
@y2

@x2
@y2

@x3
@y2

@x1
@y3

@x2
@y3

@x3
@y2

1

CCCCCCA

������������

dy1 dy2 dy3. (1.250)

The equal integrals are
ZZZ

Rx

f(~x) d3x =

ZZZ

Ry

f � x(~y)
����
@(x1, x2, x3)

@(y1, y2, y3)

���� d
3y (1.251)

in which d3x = dx1dx2dx3, d3y = dy1dy2dy3, f�x(~y) = f(x1(~y), x2(~y), x3(~y)),
and Rx and Ry are the same region in the two coordinate systems.
For n-dimensional integrals over x = (x1, . . . , xn) and y = (y1, . . . , yn),

the rule is similar
Z

Rx

f(x) dnx =

Z

Ry

f � x(y)
����
@(x1, . . . , xn)

@(y1, . . . , yn)

���� d
ny (1.252)

and uses the absolute value of the n-dimensional jacobian

J = J(x/y) =
@(x1, . . . , xn)

@(y1, . . . , yn)
= det

0

BBBB@

@x1
@y1

. . .
@xn
@y1

...
. . .

...
@x1
@yn

. . .
@xn
@yn

1

CCCCA
. (1.253)

Since the determinant of the transpose of a matrix is the same (1.214) as
the determinant of the matrix, some people write jacobians with their rows
and columns interchanged.

1.24 Systems of linear equations

Suppose we wish to solve the system of n linear equations

nX

k=1

Aikxk = yi (1.254)

for n unknowns xk. In matrix notation, with A an n ⇥ n matrix and x
and y n-vectors, this system of equations is Ax = y. If the matrix A is
nonsingular, that is, if det(A) 6= 0, then it has an inverse A�1 given by
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(1.224), and we may multiply both sides of Ax = y by A�1 and so find
x = A�1 y. When A is nonsingular, this is the unique solution to (1.254).

When A is singular, its determinant vanishes det(A) = 0, and so its
columns are linearly dependent (section 1.21). In this case, the linear de-
pendence of the columns of A implies that Az = 0 for some non-zero vector
z. Thus if x satisfies Ax = y, then so does x+ cz for any constant c because
A(x + cz) = Ax + cA z = y. So if det(A) = 0, then the equation Ax = y
may have solutions, but they will not be unique. Whether equation (1.254)
has any solutions when det(A) = 0 depends on whether the vector y can be
expressed as a linear combination of the columns of A. Since these columns
are linearly dependent, they span a subspace of fewer than n dimensions,
and so (1.254) has solutions only when the n-vector y lies in that subspace.
A system of m < n equations

nX

k=1

Aikxk = yi for i = 1, 2, . . . ,m (1.255)

in n unknowns is under determined. As long as at leastm of the n columns
Aik of the matrix A are linearly independent, such a system always has
solutions, but they may not be unique.

1.25 Linear least squares

Suppose we have a system of m > n equations in n unknowns xk
nX

k=1

Aikxk = yi for i = 1, 2, . . . ,m. (1.256)

This problem is over determined and, in general, has no solution, but it
does have an approximate solution due to Carl Gauss (1777–1855).
If the matrix A and the vector y are real, then Gauss’s solution is the n

values xk that minimize the sum E of the squares of the errors

E =
mX

i=1

 
yi �

nX

k=1

Aikxk

!2

. (1.257)

The minimizing values xk make the n derivatives of E vanish

@E

@x`
= 0 =

mX

i=1

2

 
yi �

nX

k=1

Aikxk

!
(�Ai`) (1.258)

or in matrix notation ATy = ATAx. Since A is real, the matrix ATA is
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nonnegative (1.43); if it also is positive (1.44), then it has an inverse, and
our least-squares solution is

x =
�
ATA

��1
ATy. (1.259)

If the matrix A and the vector y are complex, and if the matrix A†A is
positive, then one may derive (exercise 1.25) Gauss’s solution

x =
⇣
A†A

⌘�1
A† y. (1.260)

The operators
�
ATA

��1
AT and

�
A†A

��1
A† are pseudoinverses (section ??).

1.26 Lagrange multipliers

The maxima and minima of a function f(x) of x = (x1, x2, . . . , xn) are
among the points at which its gradient vanishes rf(x) = 0, that is,

@f(x)

@xj
= 0 (1.261)

for j = 1, . . . , n. These are stationary points of f .

Example 1.40 (Minimum) For instance, if f(x) = x21 + 2x22 + 3x23, then
its minimum is at

rf(x) = (2x1, 4x2, 6x3) = 0 (1.262)

that is, at x1 = x2 = x3 = 0.

How do we find the extrema of f(x) if x also must satisfy a constraint?
We use a Lagrange multiplier (Joseph-Louis Lagrange 1736–1813).
In the case of one constraint c(x) = 0, we need the gradient rf(x) to

vanish in those directions dx that preserve the constraint. So dx ·rf(x) = 0
for all dx that make the dot product dx · rc(x) vanish. So the extrema of
f(x) subject to the constraint c(x) = 0 satisfy the equations

rf(x) = �rc(x) and c(x) = 0. (1.263)

These n+ 1 equations define the extrema of the unconstrained function

L(x,�) = f(x)� � c(x) (1.264)

of the n+ 1 variables x1, . . . , xn,�

@L(x,�)

@xj
=
@ (f(x)� � c(x))

@xj
= 0 and

@L(x,�)

@�
= � c(x) = 0. (1.265)



1.26 Lagrange multipliers 47

The variable � is a Lagrange multiplier.
In the case of k constraints c1(x) = 0, . . . , ck(x) = 0, the projection of

rf must vanish in those directions dx that preserve all the constraints. So
dx ·rf(x) = 0 for all dx that make all dx ·rcj(x) = 0 for j = 1, . . . , k. The
gradient rf will satisfy this requirement if it’s a linear combination

rf = �1rc1 + . . .+ �k rck (1.266)

of the k gradients because then dx ·rf will vanish if dx ·rcj = 0 for j =
1, . . . , k. The extrema also must satisfy the constraints

c1(x) = 0, . . . , ck(x) = 0. (1.267)

The n+k equations (1.266 & 1.267) define the extrema of the unconstrained
function

L(x,�) = f(x)� �1 c1(x) . . .� �k ck(x) (1.268)

of the n+ k variables x and �

@L(x,�)

@xi
=
@f(x)

@xi
� �1

@c1(x)

@xi
. . .� �k

@ck(x)

@xi
= 0 (1.269)

and
@L(x,�)

@�j
= � cj(x) = 0 for j = 1, . . . , k. (1.270)

Example 1.41 (Constrained Extrema and Eigenvectors) Suppose we want
to find the extrema of a real, symmetric quadratic form

f(x) = xTAx =
nX

i,j=1

xiAij xj (1.271)

subject to the constraint c(x) = x · x � 1 which says that the n-vector x is
of unit length. We form the function

L(x,�) = xTAx� � (x · x� 1) (1.272)

and since the matrix A is real and symmetric, we find its unconstrained
extrema as

@L(x,�)

@xi
= 2

nX

k=1

Aik xk � 2�xi = 0 and x · x = 1. (1.273)

The extrema of f(x) = xTAx subject to the constraint c(x) = x · x� 1 are
the normalized eigenvectors

Ax = �x and x · x = 1 (1.274)
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of the real, symmetric matrix A.

1.27 Eigenvectors and eigenvalues

If a linear operator A maps a nonzero vector |ui into a multiple of itself

A|ui = �|ui (1.275)

then the vector |ui is an eigenvector of A with eigenvalue �. (The German
adjective eigen means own, special, or proper.)
If the vectors |ki for k = 1, . . . , n form an orthonormal basis for the vector

space in which A acts, then we can write the identity operator (1.150) for
the space as I = |1ih1| + . . . + |nihn|. By inserting this formula for I into
the eigenvector equation (1.275), we get

nX

`=1

hk|A|`ih`|ui = � hk|ui. (1.276)

In matrix notation, with Ak` = hk|A|`i and u` = h`|ui, this is Au = �u.
A subspace c`|u`i+ . . .+ cr|uri spanned by any set of eigenvectors |uki of

a matrix A is left invariant by its action, that is

A

 
X

k2S
ck|uki

!
=
X

k2S
ck A|uki =

X

k2S
ck �k|uki =

X

k2S
c0k|uki (1.277)

with c0k = ck�k. Eigenvectors span invariant subspaces.

Example 1.42 (Eigenvalues of an Orthogonal Matrix) The matrix equa-
tion

✓
cos ✓ sin ✓
� sin ✓ cos ✓

◆✓
1
±i

◆
= e±i✓

✓
1
±i

◆
(1.278)

tells us that the eigenvectors of this 2 ⇥ 2 orthogonal matrix are (1,±i)
with eigenvalues e±i✓. The eigenvalues � of a unitary (and of an orthogonal)
matrix are unimodular, |�| = 1, (exercise 1.26).

Example 1.43 (Eigenvalues of an Antisymmetric Matrix) Let us consider
an eigenvector equation for a matrix A that is antisymmetric

nX

k=1

Aik uk = �ui. (1.279)
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The antisymmetry Aik = �Aki of A implies that

nX

i,k=1

uiAik uk = 0. (1.280)

Thus the last two relations imply that

0 =
nX

i,k=1

uiAik uk = �
nX

i=1

u2i = 0. (1.281)

Thus either the eigenvalue � or the dot product of the eigenvector with itself
vanishes.

1.28 Eigenvectors of a square matrix

Let A be an n ⇥ n matrix with complex entries Aik. A vector V with n
entries Vk (not all zero ) is an eigenvector of A with eigenvalue � if

nX

k=1

AikVk = �Vi or AV = �V (1.282)

in matrix notation. Every n⇥n matrix A has n eigenvectors V (`) and eigen-
values �`

AV (`) = �`V
(`) (1.283)

for ` = 1 . . . n. To see why, we write the top equation (1.282) as

nX

k=1

(Aik � � �ik)Vk = 0 (1.284)

or in matrix notation as (A� � I)V = 0 in which I is the n ⇥ n identity
matrix with entries Iik = �ik. This equation (1.284) says that the columns of
the matrix A��I, considered as vectors, are linearly dependent (section 1.9)
because the coe�cients Vk are not all zero. The columns of a matrix A��I
are linearly dependent if and only if the determinant |A � �I| vanishes
(section 1.21). Thus a solution of the eigenvalue equation (1.282) exists if
and only if the determinant of A� �I vanishes

det (A� �I) = |A� �I| = 0. (1.285)
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This vanishing of the determinant of A��I is the characteristic equa-
tion of the matrix A. For an n⇥ n matrix A, it is a polynomial equation of
the nth degree in the unknown eigenvalue �

0 = |A� �I| = |A|+ · · ·+ (�1)n�1�n�1TrA+ (�1)n�n

= P (�, A) =
nX

k=0

pk �
k (1.286)

in which p0 = |A|, pn�1 = (�1)n�1TrA, and pn = (�1)n.
All the pk’s are basis independent. For if S is any nonsingular matrix, then

multiplication rules (1.231 & 1.235) for determinants imply that the deter-
minant |A� �I| is invariant when A undergoes a similarity transformation
(1.71 & (1.290) 1.296) A ! A0 = S�1AS

P (�, A0) = P (�, S�1AS) = |S�1AS � �I| = |S�1(A� �I)S|
= |S�1||A� �I||S| = |A� �I| = P (�, A).

(1.287)

By the fundamental theorem of algebra (section 6.9), the characteristic
equation (1.286) always has n roots or solutions �` lying somewhere in the
complex plane. Thus the characteristic polynomial P (�, A) has the fac-
tored form

P (�, A) = (�1 � �)(�2 � �) . . . (�n � �). (1.288)

For every root �`, there is a nonzero eigenvector V (`) whose components
V (`)
k are the coe�cients that make the n vectors Aik � �` �ik that are the

columns of the matrix A � �`I sum to zero in (1.284). Thus every n ⇥ n

matrix has n eigenvalues �` and n eigenvectors V
(`).

The n ⇥ n diagonal matrix A(d)
k` = �k` �` is the canonical form of the

matrix A. The matrix Vk` = V (`)
k whose columns are the eigenvectors V (`)

of A is the modal matrix. The equation AV = V A(d)

nX

k=1

Aik Vk` =
nX

k=1

Aik V
(`)
k = �` V

(`)
i =

nX

k=1

Vik �k`�` =
nX

k=1

Vik A
(d)
k` (1.289)

presents the n solutions of the eigenvector equation (1.282).
If the eigenvectors Vk` are linearly independent, then the matrix V , of

which they are the columns, is nonsingular and has an inverse V �1. The
similarity transformation

V �1AV = A(d) (1.290)

then diagonalizes the matrix A.



1.28 Eigenvectors of a square matrix 51

Example 1.44 (The Canonical Form of a 3 ⇥ 3 Matrix) If in Matlab we
set A = [0 1 2; 3 4 5; 6 7 8] and enter [V,D] = eig(A), then we get

V =

0

@
0.1648 0.7997 0.4082
0.5058 0.1042 �0.8165
0.8468 �0.5913 0.4082

1

A and Ad =

0

@
13.3485 0 0

0 �1.3485 0
0 0 0

1

A

and one may check that AV = V Ad and that V �1AV = Ad.

Setting � = 0 in the factored form (1.288) of P (�, A) and in the char-
acteristic equation (1.286), we see that the determinant of every n ⇥ n
matrix is the product of its n eigenvalues

P (0, A) = |A| = p0 = �1�2 . . .�n. (1.291)

These n roots are usually all di↵erent, and when they are, the eigenvec-
tors V (`) are linearly independent. The first eigenvector is trivially linearly
independent. Let’s assume that the first k < n eigenvectors are linearly inde-
pendent; we’ll show that the first k+1 eigenvectors are linearly independent.
If they were linearly dependent, then there would be k + 1 numbers c`, not
all zero, such that

k+1X

`=1

c`V
(`) = 0. (1.292)

First we multiply this equation from the left by the linear operator A and
use the eigenvalue equation (1.283)

A
k+1X

`=1

c` V
(`) =

k+1X

`=1

c`AV (`) =
k+1X

`=1

c` �` V
(`) = 0. (1.293)

Now we multiply the same equation (1.292) by �k+1

k+1X

`=1

c` �k+1 V
(`) = 0 (1.294)

and subtract the product (1.294) from (1.293). The terms with ` = k + 1
cancel leaving

kX

`=1

c` (�` � �k+1)V
(`) = 0 (1.295)

in which all the factors (�` � �k+1) are di↵erent from zero since by assump-
tion all the eigenvalues are di↵erent. But this last equation says that the



52 Linear Algebra

first k eigenvectors are linearly dependent, which contradicts our assump-
tion that they were linearly independent. This contradiction tells us that if
all n eigenvectors of an n ⇥ n square matrix have di↵erent eigen-
values, then they are linearly independent. Similarly, if any k < n
eigenvectors of an n⇥ n square matrix have di↵erent eigenvalues, then they
are linearly independent.
An eigenvalue � that is a single root of the characteristic equation (1.286),

i.e., that occurs only once in its factored form (1.288), is associated with
a single eigenvector and is called a simple eigenvalue. An eigenvalue �
that is a root of multiplicity n of the characteristic equation is associated
with n eigenvectors; it is said to be an n-fold degenerate eigenvalue
or to have algebraic multiplicity n. Its geometric multiplicity is the
number n0  n of linearly independent eigenvectors with eigenvalue �. A
matrix with n0 < n for any eigenvalue � is defective. Thus an n⇥n matrix
with fewer than n linearly independent eigenvectors is defective. So every
nondefective square matrix A can be diagonalized by a similarity
transformation (1.290)

V
�1

AV = A
(d). (1.296)

The elements of the main diagonal of the matrix A(d) are the eigenvalues of
the matrix A. Thus the trace of every nondefective matrix A is the sum of
its eigenvalues, TrA = TrA(d) = �a + · · · + �n. The columns of the matrix
V are the eigenvectors of the matrix A.
Since the determinant of every matrix A is the product (1.291) of its

eigenvalues, detA = |A| = �1�2 . . .�n, the determinant of every nondefective
matrix is the exponential of the trace of its logarithm

detA = exp [Tr (logA)] . (1.297)

Example 1.45 (A Defective 2⇥ 2 Matrix) Each of the 2 ⇥ 2 matrices

✓
0 1
0 0

◆
and

✓
0 0
1 0

◆
(1.298)

has only one linearly independent eigenvector and so is defective.
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1.29 A matrix obeys its characteristic equation

Every square matrix obeys its characteristic equation (1.286). That is, the
characteristic equation

P (�, A) = |A� �I| =
nX

k=0

pk �
k = 0 (1.299)

remains true when the matrix A replaces the variable �

P (A,A) =
nX

k=0

pk A
k = 0. (1.300)

To see why, we use the formula (1.224) for the inverse of the matrix A��I

(A� �I)�1 =
C(�, A)T

|A� �I| (1.301)

in which C(�, A)T is the transpose of the matrix of cofactors of the matrix
A� �I. Since |A� �I| = P (�, A), we have, rearranging,

(A� �I)C(�, A)T = |A� �I| I = P (�, A) I. (1.302)

The transpose of the matrix of cofactors of the matrix A��I is a polynomial
in � with coe�cients C0, . . . , Cn�1 that are matrices

C(�, A)T = C0 + C1�+ . . .+ Cn�1�
n�1. (1.303)

Combining these last two equations (1.302 & 1.303) with the characteristic
equation (1.299), we have

(A� �I)C(�, A)T = AC0 + (AC1 � C0)�+ (AC2 � C1)�
2 + . . .

+ (ACn�1 � Cn�2)�
n�1 � Cn�1�

n (1.304)

=
nX

k=0

pk �
kI.

Equating equal powers of � on both sides of this equation, we find

AC0 = p0I

AC1 � C0 = p1I

AC2 � C1 = p2I

. . . = . . . (1.305)

ACn�1 � Cn�2 = pn�1I

�Cn�1 = pnI.
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We now multiply from the left the first of these equations by I, the second
by A, the third by A2, . . . , and the last by An and then add the resulting
equations. All the terms on the left-hand sides cancel, while the sum of those
on the right gives p0I + p1A+ · · ·+ pnAn = P (A,A). Thus a square matrix
A obeys its characteristic equation

0 =
nX

k=0

pk A
k = |A| I+p1A+ . . .+(�1)n�1(TrA)An�1+(�1)nAn (1.306)

a result known as the Cayley-Hamilton theorem (Arthur Cayley, 1821–
1895, and William Hamilton, 1805–1865). This derivation is due to Israel
Gelfand (1913–2009) (Gelfand, 1961, pp. 89–90).
Because every n ⇥ n matrix A obeys its characteristic equation, its nth

power An can be expressed as a linear combination of its lesser powers

An = (�1)n�1
�
|A| I + p1A+ p2A

2 + . . .+ (�1)n�1(TrA)An�1
�
. (1.307)

For instance, the square A2 of every 2⇥ 2 matrix is given by

A2 = �|A|I + (TrA)A. (1.308)

Example 1.46 (Spin-one-half rotation matrix) If ✓ is a real 3-vector and
� is the 3-vector of Pauli matrices (1.36), then the square of the traceless
2⇥ 2 matrix A = ✓ · � is

(✓ · �)2 = � |✓ · �| I = �
����

✓3 ✓1 � i✓2
✓1 + i✓2 �✓3

���� I = ✓2 I (1.309)

in which ✓2 = ✓ · ✓. One may use this identity to show (exercise 1.28) that

exp (�i✓ · �/2) = cos(✓/2) I � i✓̂ · � sin(✓/2) (1.310)

in which ✓̂ is a unit 3-vector. For a spin-one-half object, this matrix repre-
sents an active right-handed rotation of ✓ radians about the axis ✓̂.

1.30 Functions of matrices

What sense can we make of a function f of an n ⇥ n matrix A? and how
would we compute it? One way is to use the characteristic equation (1.307) to
express every power of A in terms of I, A, . . . , An�1 and the coe�cients p0 =
|A|, p1, p2, . . . , pn�2, and pn�1 = (�1)n�1TrA. Then if f(x) is a polynomial
or a function with a convergent power series

f(x) =
1X

k=0

ck x
k (1.311)
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in principle we may express f(A) in terms of n functions fk(p) of the coef-
ficients p ⌘ (p0, . . . , pn�1) as

f(A) =
n�1X

k=0

fk(p)A
k. (1.312)

The identity (1.310) for exp (�i✓ · �/2) is an n = 2 example of this technique
which can become challenging when n > 3.

Example 1.47 (The 3⇥ 3 Rotation Matrix) In exercise (1.29), one finds
the characteristic equation (1.306) for the 3⇥3 matrix �i✓ · J in which
(Jk)ij = i✏ikj , and ✏ijk is totally antisymmetric with ✏123 = 1. The generators
Jk satisfy the commutation relations [Ji, Jj ] = i✏ijkJk in which sums over
repeated indices from 1 to 3 are understood. In exercise (1.30), one uses
the characteristic equation for �i✓ · J to show that the 3⇥3 real orthogonal
matrix exp(�i✓ · J), which represents a right-handed rotation by ✓ radians
about the axis ✓̂, is

exp(�i✓ · J) = cos ✓ I � i✓̂ · J sin ✓ + (1� cos ✓) ✓̂(✓̂)T (1.313)

or

exp(�i✓ · J)ij = �ij cos ✓ � sin ✓ ✏ijk✓̂k + (1� cos ✓) ✓̂i✓̂j (1.314)

in terms of indices.

Direct use of the characteristic equation can become unwieldy for larger
values of n. Fortunately, another trick is available if A is a nondefective
square matrix, and if the power series (1.311) for f(x) converges. For then
A is related to its diagonal form A(d) by the similarity transformation (1.290)
of its model matrix V , and we may define f(A) as

f(A) = V f(A(d))V �1. (1.315)

in which f(A(d)) is the diagonal matrix with entries f(a`)

f(A(d)) =

0

BBB@

f(a1) 0 0 . . .
0 f(a2) 0 . . .
...

...
...

...
0 0 . . . f(an)

1

CCCA
(1.316)

and a1, a1, . . . an are the eigenvalues of the matrix A. This definition makes
sense if f(A) is a series in powers of A because then

f(A) =
1X

k=0

ckA
k =

1X

k=0

ck
⇣
V A(d)V �1

⌘k
. (1.317)
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So since V �1V = I, we have
�
V A(d)V �1

�k
= V

�
A(d)

�k
V �1 and thus

f(A) = V

" 1X

k=0

ck
⇣
A(d)

⌘k
#
V �1 = V f(A(d))V �1 (1.318)

which is (1.315).

Example 1.48 (Momentum operators generate spatial translations) The
position operator x and the momentum operator p obey the commutation
relation [x, p] = xp � px = i~. Thus the a-derivative ẋ(a) of the operator
x(a) = eiap/~ x e�iap/~ is unity

ẋ(a) = eiap/~ (i/~)[p, x] e�iap/~ = eiap/~ e�iap/~ = 1. (1.319)

Since x(0) = x, we see that the unitary transformation U(a) = eiap/~ moves
x to x+ a

eiap/~ x e�iap/~ = x(a) = x(0) +

Z a

0
ẋ(a0) da0 = x+ a. (1.320)

Example 1.49 (Glauber’s identity) The commutator of the annihilation
operator a and the creation operator a† for a given mode is the number 1

[a, a†] = a a† � a† a = 1. (1.321)

Thus a and a† commute with their commutator [a, a†] = 1 just as x and p
commute with their commutator [x, p] = i~.
Suppose that A and B are any two operators that commute with their

commutator [A,B] = AB �BA

[A, [A,B]] = [B, [A,B]] = 0. (1.322)

As in the [x, p] example (1.48), we define AB(t) = e�tB AetB and note
that because [B, [A,B]] = 0, its t-derivative is simply

ȦB(t) = e�tB [A,B] etB = [A,B]. (1.323)

Since AB(0) = A, an integration gives

AB(t) = A+

Z t

0
Ȧ(t) dt = A+

Z t

0
[A,B] dt = A+ t [A,B]. (1.324)

Multiplication from the left by etB now gives etB AB(t) as

etB AB(t) = AetB = etB (A+ t [A,B]) . (1.325)
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Now we define

G(t) = etA etB e�t(A+B) (1.326)

and use our formula (1.325) to compute its t-derivative as

Ġ(t) = etA
�
AetB + etB B � etB(A+B)

�
e�t(A+B)

= etA
�
etB (A+ t [A,B]) + etB B � etB(A+B)

�
e�t(A+B)

= etA etB t [A,B] et(A+B) = t [A,B]G(t) = tG(t) [A,B].

(1.327)

Since Ġ(t), G(t), and [A,B] all commute with each other, we can integrate
this operator equation

d

dt
logG(t) =

Ġ(t)

G(t)
= t [A,B] (1.328)

from 0 to 1 and get since G(0) = 1

logG(1)� logG(0) = logG(1) =
1

2
[A,B]. (1.329)

Thus G(1) = e[A,B]/2 and so

eA eB e�(A+B) = e
1
2 [A,B] or eA eB = eA+B+ 1

2 [A,B] (1.330)

which is Glauber’s identity.

Example 1.50 (Chemical reactions) The chemical reactions [A]
a��! [B],

[B]
b��! [A], and [B]

c��! [C] make the concentrations [A] ⌘ A, [B] ⌘ B,
and [C] ⌘ C of three kinds of molecules vary with time as

Ȧ = � aA+ bB, Ḃ = aA� (b+ c)B and Ċ = cB. (1.331)

We can group these concentrations into a 3-vector V = (A,B,C) and write
the three equations (1.331) as V̇ = K V in which K is the matrix

K =

0

@
�a b 0
a �b� c 0
0 c 0

1

A . (1.332)

The solution to the di↵erential equation V̇ = K V is V (t) = eKt V (0).
The eigenvalues of the matrix K are the roots of the cubic equation

det(K � �I) = 0. One root vanishes, and the other two are the roots of
the quadratic equation �2 + (a + b + c)� + ac = 0. Their sum is the trace
TrK = �(a + b + c). They are real when a, b, and c are positive but are
complex when 4ac > (a + b + c)2. The eigenvectors are complete unless
4ac = (a+ b+ c)2, but are not orthogonal unless c = 0.
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The time evolution of the concentrations [A] (dashdot), [B] (solid), and
[C] (dashes) are plotted in Fig. 1.1 for the initial conditions [A] = 1 and
[B] = [C] = 0 and rates a = 0.15, b = 0.1, and c = 0.1. The Matlab code is
in the repository Linear algebra at github.com/kevinecahill.

Chemical reactions
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Figure 1.1 The concentrations [A] (dashdot), [B] (solid), and [C] (dashes)
as given by the matrix equation V (t) = eKt V (0) for the initial conditions
[A] = 1 and [B] = [C] = 0 and rates a = 0.15, b = 0.1, and c = 0.1.

Example 1.51 (Time-evolution operator) In quantum mechanics, the
time-evolution operator is the exponential exp(�iHt/~) where H = H† is a
hermitian linear operator, the hamiltonian (William Rowan Hamilton 1805–
1865 ), and ~ = h/(2⇡) = 1.054⇥10�34 Js where h is Planck’s constant (Max
Planck 1858–1947). As we’ll see in the next section, hermitian operators are
never defective, so H can be diagonalized by a similarity transformation

H = SH(d)S�1. (1.333)

The diagonal elements of the diagonal matrix H(d) are the energies E` of
the states of the system described by the hamiltonian H. The time-evolution
operator U(t) then is

U(t) = S exp(�iH(d)t/~)S�1. (1.334)
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For a three-state system with angular frequencies !i = Ei/~, it is

U(t) = S

0

@
e�i!1t 0 0

0 e�i!2t

0 0 e�i!3t

1

A S�1. (1.335)

Example 1.52 (Entropy) The entropy S of a system described by a
density operator ⇢ is the trace S = �kTr (⇢ ln ⇢) in which k = 1.38 ⇥
10�23 J/K is the constant named after Ludwig Boltzmann (1844–1906).
The density operator ⇢ is hermitian, nonnegative, and of unit trace. Since ⇢
is hermitian, the matrix that represents it is never defective (section 1.31),
and so it can be diagonalized by a similarity transformation ⇢ = S ⇢(d) S�1.
By (1.27), TrABC = TrBCA, so we can write S as

S = �kTr
⇣
S ⇢(d) S�1 S ln(⇢(d))S�1

⌘
= �kTr

⇣
⇢(d) ln(⇢(d))

⌘
. (1.336)

A vanishing eigenvalue ⇢(d)k = 0 contributes nothing to this trace since
limx!0 x lnx = 0. If the system has three states, populated with proba-
bilities ⇢i, the elements of ⇢(d), then the sum

S = �k (⇢1 ln ⇢1 + ⇢2 ln ⇢2 + ⇢3 ln ⇢3)

= k [⇢1 ln (1/⇢1) + ⇢2 ln (1/⇢2) + ⇢3 ln (1/⇢3)] (1.337)

is its entropy.

Example 1.53 (Logarithm of a determinant) Since every nondefective
n ⇥ n matrix A may be diagonalized by a similarity transformation, its
determinant is the product of its eigenvalues and its trace is the sum of
them, and so the logarithm of its determinant is the trace of its logarithm

ln detA = ln(�1 . . .�n) = ln(�1) + · · ·+ ln(�n) = Tr(lnA). (1.338)

When none of A’s eigenvalues vanishes, this relation implies the earlier result
(1.237) that the variation of A’s determinant is

� detA = detA Tr(A�1�A). (1.339)

1.31 Hermitian matrices

Hermitian matrices have very nice properties. By definition (1.34), a hermi-
tian matrix A is square and unchanged by hermitian conjugation A† = A.
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Since it is square, the results of section 1.28 ensure that an n⇥ n hermitian
matrix A has n eigenvectors |ki with eigenvalues ak

A|ki = ak|ki. (1.340)

In fact, all its eigenvalues are real. To see why, we take the adjoint

hk|A† = a⇤khk| (1.341)

and use the property A† = A to find

hk|A† = hk|A = a⇤khk|. (1.342)

We now form the inner product of both sides of this equation with the ket
|ki and use the eigenvalue equation (1.340) to get

hk|A|ki = akhk|ki = a⇤khk|ki (1.343)

which (since hk|ki > 0) tells us that the eigenvalues are real

a⇤k = ak. (1.344)

Since A† = A, the matrix elements of A between two of its eigenvectors
satisfy

a⇤mhm|ki = (amhk|mi)⇤ = hk|A|mi⇤ = hm|A†|ki = hm|A|ki = akhm|ki
(1.345)

which implies that

(a⇤m � ak) hm|ki = 0. (1.346)

But by (1.344), the eigenvalues am are real, and so we have

(am � ak) hm|ki = 0 (1.347)

which tells us that when the eigenvalues are di↵erent, the eigenvectors are
orthogonal. In the absence of a symmetry, the eigenvalues are usually dif-
ferent and the eigenvectors mutually orthogonal.
When two or more eigenvectors |k↵i of a hermitian matrix have the same

eigenvalue ak, their eigenvalues are said to be degenerate. In this case, any
linear combination of the degenerate eigenvectors also will be an eigenvector
with the same eigenvalue ak

A

 
X

↵2D
c↵|k↵i

!
= ak

 
X

↵2D
c↵|k↵i

!
(1.348)

where D is the set of labels ↵ of the eigenvectors with the same eigenvalue.
If the degenerate eigenvectors |k↵i are linearly independent, then we may
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use the Gram-Schmidt procedure (1.120–1.130) to choose the coe�cients
c↵ so as to construct degenerate eigenvectors that are orthogonal to each
other and to the nondegenerate eigenvectors. We then may normalize these
mutually orthogonal eigenvectors.

But two related questions arise: Are the degenerate eigenvectors |k↵i lin-
early independent? And if so, what orthonormal linear combinations of them
should we choose for a given physical problem? Let’s consider the second
question first.

We know that unitary transformations preserve the orthonormality of
a basis (section 1.17). Any unitary transformation that commutes with a
matrix A

[A,U ] = 0 (1.349)

represents a symmetry of A and maps each set of orthonormal degenerate
eigenvectors of A into another set of orthonormal degenerate eigenvectors of
A with the same eigenvalue because

AU |k↵i = UA|k↵i = ak U |k↵i. (1.350)

So there’s a huge spectrum of choices for the orthonormal degenerate eigen-
vectors of A with the same eigenvalue. What is the right set for a given
physical problem?
A sensible way to proceed is to add to the matrix A a second hermitian

matrix B multiplied by a tiny, real scale factor ✏

A(✏) = A+ ✏B. (1.351)

The matrix B must completely break whatever symmetry led to the de-
generacy in the eigenvalues of A. Ideally, the matrix B should be one that
represents a modification of A that is physically plausible and relevant to
the problem at hand. The hermitian matrix A(✏) then will have n di↵erent
eigenvalues ak(✏) and n orthonormal nondegenerate eigenvectors

A(✏)|k� , ✏i = ak� (✏)|k� , ✏i. (1.352)

These eigenvectors |k� , ✏i of A(✏) are orthogonal to each other

hk� , ✏|k�0 , ✏i = ��,�0 (1.353)

and to the eigenvectors of A(✏) with other eigenvalues, and they remain so
as we take the limit

|k�i = lim
✏!0

|k� , ✏i. (1.354)

We may choose them as the orthogonal degenerate eigenvectors of A. Since
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one can always find a crooked hermitian matrix B that breaks any particular
symmetry, it follows that every n⇥n hermitian matrix A has n orthonormal
eigenvectors that are complete in the vector space in which A acts. (Any
n linearly independent vectors span their n-dimensional vector space, as
explained in section 1.10.)
Now let’s return to the first question and show by a di↵erent argument

that an n ⇥ n hermitian matrix has n orthogonal eigenvectors. To do this,
we first note that the space S?,k of vectors |yi orthogonal to an eigenvector
|ki of a hermitian operator A

A|ki = ak|ki (1.355)

is invariant under the action of A, that is, hk|yi = 0 implies

hk|A|yi = akhk|yi = 0. (1.356)

Thus if the vector |yi is in the space S?,k of vectors orthogonal to an eigen-
vector |ki of a hermitian operator A, then the vector A|yi also is in the
space S?,k. This space is invariant under the action of A.
Now a hermitian operator A acting on an n-dimensional vector space S

is represented by an n ⇥ n hermitian matrix, and so it has at least one
eigenvector |1i. The subspace S?,1 of S consisting of all vectors orthogonal
to |1i is an (n�1)-dimensional vector space Sn�1 that is invariant under the
action of A. On this space Sn�1, the operator A is represented by an (n�1)⇥
(n�1) hermitian matrix An�1. This matrix has at least one eigenvector |2i.
The subspace S?,2 of Sn�1 consisting of all vectors orthogonal to |2i is an
(n� 2)-dimensional vector space Sn�2 that is invariant under the action of
A. On Sn�2, the operator A is represented by an (n� 2)⇥ (n� 2) hermitian
matrix An�2 which has at least one eigenvector |3i. By construction, the
vectors |1i, |2i, and |3i are mutually orthogonal. Continuing in this way,
we see that A has n orthogonal eigenvectors |ki for k = 1, 2, . . . , n. Thus
hermitian matrices are nondefective.
The n orthogonal eigenvectors |ki of an n⇥n matrix A can be normalized

and used to write the n⇥ n identity operator I as

I =
nX

k=1

|kihk|. (1.357)

On multiplying from the left by the matrix A, we find

A = AI = A
nX

k=1

|kihk| =
nX

k=1

ak|kihk| (1.358)
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which is the diagonal form of the hermitian matrix A. This expansion of A as
a sum over outer products of its eigenstates multiplied by their eigenvalues
exhibits the possible values ak of the physical quantity represented by the
matrix A when selective, nondestructive measurements |kihk| of the quantity
A are made.
The hermitian matrix A is diagonal in the basis of its eigenstates |ki

Akj = hk|A|ji = ak�kj . (1.359)

But in any other basis |↵ki, the matrix A appears as

Ak` = h↵k|A|↵`i =
nX

n=1

h↵k|nianhn|↵`i. (1.360)

The unitary matrix Ukn = h↵k|ni relates the matrix Ak` in an arbitrary
basis to its diagonal form A(d) = U †AU which is the diagonal matrix
A(d)

nm = hn|A|mi = an �nm. An arbitrary n ⇥ n hermitian matrix A can
be diagonalized by a unitary transformation.
A matrix H that is real and symmetric is hermitian; so is one H 0 that

is imaginary and antisymmetric; and so is their sum H + H 0 which is
neither real nor imaginary nor symmetric nor antisymmetric. A real, sym-
metric matrix R can be diagonalized by an orthogonal transformation

R = OR(d)OT (1.361)

in which the matrix O is a real unitary matrix, i.e., an orthogonal matrix
(1.193).

Example 1.54 (The Seesaw Mechanism) Suppose we wish to find the
eigenvalues of the real, symmetric mass matrix

M =

✓
0 m
m M

◆
(1.362)

in which m is an ordinary mass and M is a huge mass. The eigenvalues µ of
this hermitian mass matrix satisfy det (M� µI) = µ(µ�M)�m2 = 0 with

solutions µ± =
⇣
M ±

p
M2 + 4m2

⌘
/2. The larger mass µ+ ⇡ M+m2/M is

approximately the huge mass M and the smaller mass µ� ⇡ �m2/M is tiny.
The physical mass of a fermion is the absolute value of its mass parameter,
here m2/M .

The product of the two eigenvalues is the constant µ+µ� = detM = �m2

so as µ� goes down, µ+ must go up. Minkowski, Yanagida, and Gell-Mann,
Ramond, and Slansky invented this “seesaw” mechanism as an explanation
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of why neutrinos have such small masses, less than 1 eV/c2. If mc2 = 10
MeV, and µ�c2 ⇡ 0.01 eV, which is a plausible light-neutrino mass, then
the rest energy of the huge mass would be Mc2 = 107 GeV suggesting new
physics at that scale. But if we set mc2 = 0.28 MeV and use m⌫ = 0.45 eV
as an average neutrino mass, then the big mass is only Mc2 = 173 GeV, the
mass of the top. Also, the small masses of the neutrinos may be related to
the weakness of their interactions.

If we return to the orthogonal transformation (1.361) and multiply column

` of the matrix O and row ` of the matrix OT by
q
|R(d)

` |, then we arrive at
the congruency transformation of Sylvester’s theorem

R = C R̂(d)CT (1.363)

in which the diagonal entries R̂(d)
` are either ±1 or 0 because the matrices

Ck` =
q
|R(d)

` |Ok` and CT have absorbed the factors |R(d)
` |.

Example 1.55 (Principle of equivalence) If G is a real, symmetric 4 ⇥ 4
matrix then there’s a real 4⇥ 4 matrix D = CT�1 such that

Gd = DTGD =

0

BB@

g1 0 0 0
0 g2 0 0
0 0 g3 0
0 0 0 g4

1

CCA (1.364)

in which the diagonal entries gi are ±1 or 0. Thus there’s a real 4⇥4 matrix
D that casts any real symmetric metric gik of spacetime with three positive
and one negative eigenvalues into the diagonal metric ⌘j` of flat spacetime
by the congruence

gd = DTgD =

0

BB@

�1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

CCA = ⌘ (1.365)

at any given point x of spacetime. Usually one needs di↵erentD’s at di↵erent
points of spacetime. The principle of equivalence (section 13.25) says that
in the new free-fall coordinates, all physical laws take the same form as
in special relativity without acceleration or gravitation in a suitably small
region of spacetime about the point x.
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1.32 Normal matrices

The largest set of matrices that can be diagonalized by a unitary trans-
formation is the set of normal matrices. These are square matrices that
commute with their adjoints

[V, V †] = V V † � V †V = 0. (1.366)

This broad class of matrices includes not only hermitian matrices but also
unitary matrices since

[U,U †] = UU † � U †U = I � I = 0. (1.367)

A matrix V = U † V (d) U that can be diagonalized by a unitary trans-
formation U commutes with its adjoint V † = U † V (d)⇤ U and so is normal
because the commutator of any two diagonal matrices vanishes

[V, V †] = [U † V (d) U,U † V (d)⇤ U ] = U †[V (d), V (d)⇤]U = 0. (1.368)

To see why a normal matrix can be diagonalized by a unitary transfor-
mation, we consider an n⇥ n normal matrix V which since it is square has
n eigenvectors |ki with eigenvalues vk

(V � vkI) |ki = 0 (1.369)

(section 1.28). The square of the norm (1.89) of this vector must vanish

k (V � vkI) |ki k2= hk| (V � vkI)
† (V � vkI) |ki = 0. (1.370)

But since V is normal, we also have

hk| (V � vkI) (V � vkI)
† |ki = 0. (1.371)

So the square of the norm of the vector
�
V † � v⇤kI

�
|ki = (V � vkI)

† |ki also
vanishes k

�
V † � v⇤kI

�
|ki k2= 0 which tells us that |ki also is an eigenvector

of V † with eigenvalue v⇤k

V †|ki = v⇤k|ki and so hk|V = vkhk|. (1.372)

If now |mi is an eigenvector of V with eigenvalue vm

V |mi = vm|mi (1.373)

then

hk|V |mi = vmhk|mi (1.374)

and also by (1.372)

hk|V |mi = vkhk|mi. (1.375)



66 Linear Algebra

Subtracting (1.374) from (1.375), we get

(vk � vm) hk|mi = 0 (1.376)

which shows that any two eigenvectors of a normal matrix V with
di↵erent eigenvalues are orthogonal.
To see that a normal n ⇥ n matrix V has n orthogonal eigenvectors, we

first note that if |yi is any vector that is orthogonal to any eigenvector |ki
of the matrix V , that is both hk|yi = 0 and V |ki = vk|ki, then the property
(1.372) implies that

hk|V |yi = vkhk|yi = 0. (1.377)

Thus the space of vectors orthogonal to an eigenvector of a normal matrix
V is invariant under the action of V . The argument following the analo-
gous equation (1.356) applies also to normal matrices and shows that every
n ⇥ n normal matrix has n orthonormal eigenvectors. It follows then
from the argument of equations (1.357–1.360) that every n⇥n normal matrix
V can be diagonalized by an n⇥ n unitary matrix U

V = UV (d)U † (1.378)

whose kth column U`k = h↵`|ki is the eigenvector |ki in the arbitrary basis
|↵`i of the matrix Vm` = h↵m|V |↵`i as in (1.360).
Since the eigenstates |ki of a normal matrix V

V |ki = vk|ki (1.379)

are complete and orthonormal, we can write the identity operator I as

I =
nX

k=1

|kihk|. (1.380)

The product V I is V itself, so

V = V I = V
nX

k=1

|kihk| =
nX

k=1

vk |kihk|. (1.381)

It follows therefore that if f is a function, then f(V ) is

f(V ) =
nX

k=1

f(vk) |kihk| (1.382)

which is simpler than the corresponding formula (1.315) for an arbitrary
nondefective matrix. This is a good way to think about functions of normal
matrices.
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Example 1.56 (Time-evolution operator) How do we handle the operator
exp(�iHt/~) that translates states in time by t? The hamiltonian H is
hermitian and so is normal. Its orthonormal eigenstates |ki have energy Ek

H|ki = Ek|ki. (1.383)

So we apply (1.382) with V ! H and get

e�iHt/~ =
nX

k=1

e�iEkt/~ |kihk| (1.384)

which lets us compute the time evolution of any state | i as

e�iHt/~| i =
nX

k=1

e�iEkt/~ |kihk| i (1.385)

if we know the eigenstates |ki and eigenvalues Ek of the hamiltonian H.

The determinant |V | of a normal matrix V satisfies the identities

|V | = exp [Tr(lnV )] , ln |V | = Tr(lnV ), and � ln |V | = Tr
�
V �1�V

�
.

(1.386)

1.33 Compatible normal matrices

Two normal matrices A and B that commute

[A,B] ⌘ AB �BA = 0 (1.387)

are said to be compatible. Since these operators are normal, they have
complete sets of orthonormal eigenvectors. If |ui is an eigenvector of A with
eigenvalue z, then so is B|ui since

AB|ui = BA|ui = Bz|ui = z B|ui. (1.388)

We have seen that any normal matrix A can be written as a sum (1.34) of
outer products

A =
nX

k=1

|akiakhak| (1.389)

of its orthonormal eigenvectors |aki which are complete in the n-dimensional
vector space S on which A acts. Suppose now that the eigenvalues ak of A
are nondegenerate, and that B is another normal matrix acting on S and
that the matrices A and B are compatible. Then in the basis provided by
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the eigenvectors |aki of the matrix A, the the normal matrix A obeys the
relation (1.372) ha`|A = a`ha`|, and so the matrix B must satisfy

0 = ha`|AB �BA|aki = (a` � ak) ha`|B|aki (1.390)

which says that ha`|B|aki is zero unless a` = ak. Thus if the eigenvalues a`
of the operator A are nondegenerate, then the operator B is diagonal

B = IBI =
nX

`=1

|a`iha`|B
nX

k=1

|akihak| =
nX

`=1

|a`iha`|B|a`iha`| (1.391)

in the |a`i basis. Moreover B maps each eigenket |aki of A into a ultiple of
itself

B|aki =
nX

`=1

|a`iha`|B|a`iha`|aki =
nX

`=1

|a`iha`|B|a`i�`k = hak|B|aki|aki

(1.392)
which shows that each eigenvector |aki of the matrix A also is an eigen-
vector of the matrix B with eigenvalue hak|B|aki. Thus two compatible
normal matrices can be simultaneously diagonalized if one of them
has nondegenerate eigenvalues.
If A’s eigenvalues a` are degenerate, each eigenvalue a` may have d` or-

thonormal eigenvectors |a`, ki for k = 1, . . . , d`. In this case, the matrix
elements ha`, k|B|am, k0i of B are zero unless the eigenvalues are the same,
a` = am. The matrix representing the operator B in this basis consists of
square, d` ⇥ d`, normal submatrices ha`, k|B|a`, k0i arranged along its main
diagonal; it is said to be in block-diagonal form. Since each submatrix
is a d` ⇥ d`, normal matrix, we may find linear combinations |a`, bki of the
degenerate eigenvectors |a`, ki that are orthonormal eigenvectors of both
compatible operators

A|a`, bki = a`|a`, bki and B|a`, bki = bk|a`, bki. (1.393)

Thus one can simultaneously diagonalize any two compatible operators.
The converse also is true: If the operators A and B can be simultaneously

diagonalized as in (1.393), then they commute

AB|a`, bki = Abk|a`, bki = a`bk|a`, bki = a`B|a`, bki = BA|a`, bki (1.394)

and so are compatible. Normal matrices can be simultaneously diagonalized
if and only if they are compatible, i.e., if and only if they commute.
In quantum mechanics, compatible hermitian operators represent physical

observables that can be measured simultaneously to arbitrary precision (in
principle). A set of compatible hermitian operators A,B,C, . . . is said to be
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complete if to every set of eigenvalues aj , bk, c`, . . . there is only a single
eigenvector |aj , bk, c`, . . .i.

Example 1.57 (Compatible Photon Observables) For example, the state
of a photon is completely characterized by its momentum and its angular
momentum about its direction of motion. For a photon, the momentum
operator P and the dot product J · P of the angular momentum J with
the momentum form a complete set of compatible hermitian observables.
Incidentally, because its mass is zero, the angular momentum J of a photon
about its direction of motion can have only two values ±~, which correspond
to its two possible states of circular polarization.

Example 1.58 (Thermal density operator) A density operator ⇢ is the
most general description of a quantum-mechanical system. It is hermitian,
positive definite, and of unit trace. Since it is hermitian, it can be diagonal-
ized (section 1.31)

⇢ =
X

n

|nihn|⇢|nihn| (1.395)

and its eigenvalues ⇢n = hn|⇢|ni are real. Each ⇢n is the probability that the
system is in the state |ni and so is nonnegative. The unit-trace rule

X

n

⇢n = 1. (1.396)

ensures that these probabilities add up to one—the system is in some state.
The mean value of an operator F is the trace, hF i = Tr(⇢F ). So the av-

erage energy E is the trace, E = hHi = Tr(⇢H). The entropy operator S
is the negative logarithm of the density operator multiplied by Boltzmann’s
constant, S = �k ln ⇢, and the mean entropy S is S = hSi = �kTr(⇢ ln ⇢).

A density operator that describes a system in thermal equilibrium at
a constant temperature T is time independent and so commutes with the
hamiltonian, [⇢, H] = 0. Since ⇢ andH commute, they are compatible opera-
tors (1.387), and so they can be simultaneously diagonalized. Each eigenstate
|ni of ⇢ is an eigenstate of H; its energy En is its eigenvalue, H|ni = En|ni.

If we have no information about the state of the system other than its
mean energy E, then we take ⇢ to be the density operator that maximizes
the mean entropy S while respecting the constraints c1 =

P
n ⇢n�1 = 0 and

c2 = Tr(⇢H)�E = 0. We introduce two Lagrange multipliers (section 1.26)
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and maximize the unconstrained function

L(⇢,�1,�2) = S � �1 c1 � �2 c2 (1.397)

= � k
X

n

⇢n ln ⇢n � �1

 
X

n

⇢n � 1

!
� �2

 
X

n

⇢nEn � E

!

by setting its derivatives with respect to ⇢n, �1, and �2 equal to zero

@L

@⇢n
= �k (ln ⇢n + 1)� �1 � �2En = 0 (1.398)

@L

@�1
=
X

n

⇢n � 1 = 0 (1.399)

@L

@�2
=
X

n

⇢nEn � E = 0. (1.400)

The first (1.398) of these conditions implies that

⇢n = exp [�(�1 + �2En + k)/k] . (1.401)

We satisfy the second condition (1.399) by choosing �1 so that

⇢n =
exp(��2En/k)P
n exp(��2En/k)

. (1.402)

Setting �2 = 1/T , we define the temperature T so that ⇢ satisfies the third
condition (1.400). Its eigenvalue ⇢n then is

⇢n =
exp(�En/kT )P
n exp(�En/kT )

. (1.403)

In terms of the inverse temperature � ⌘ 1/(kT ), the density operator is

⇢ =
e��H

Tr (e��H)
(1.404)

which is the Boltzmann distribution, also called the canonical ensem-
ble.

Example 1.59 (Grand canonical ensemble) Lagrange’s function for the
density operator of a system of maximum entropy S = �kTr(⇢ ln ⇢) given
a fixed mean energy E = Tr(⇢H) and a fixed mean number of particles
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hNi = Tr(⇢N), in which N is the number operator N |ni = Nn|ni, is

L(⇢,�1,�2,�3) = � k
X

n

⇢n ln ⇢n � �1

 
X

n

⇢n � 1

!

� �2

 
X

n

⇢nEn � E

!
� �3

 
X

n

⇢nNn � hNi
!
.

(1.405)

Setting the partial derivative of L with respect to ⇢n

@L

@⇢n
= � k (ln ⇢n + 1)� �1 � �2En � �3Nn = 0 (1.406)

as well as the partial derivatives of L with respect to the three Lagrange
multipliers �i equal to zero, we get

⇢ =
e��(H�µN)

Tr(e��(H�µN))
(1.407)

in which µ is the chemical potential.

Example 1.60 (Anticommuting operators) Fermion operators like ↵a +
�a† and �b + �b† that anticommute, {↵a + �a†, �b + �b†} = 0, are not
compatible. Each has complex eigenvalues and eigenvectors, but no complex
vector is an eigenvector of both ↵a + �a† and �b + �b†. For that one needs
Grassmann eigenvalues and eigenvectors Section 20.12.

1.34 Singular-value decompositions

Every complex m ⇥ n rectangular matrix A is the product of an m ⇥ m
unitary matrix U , an m⇥ n rectangular matrix ⌃ that is zero except on its
main diagonal on which A’s nonnegative singular values Sk are arranged,
and an n⇥ n unitary matrix V †

A = U ⌃V † or Aik =

min(m,n)X

`=1

Ui` S` V
†
`k. (1.408)

This singular-value decomposition is a key theorem of matrix algebra.
Suppose A is a linear operator that maps vectors in an n-dimensional

vector space Vn into vectors in an m-dimensional vector space Vm. Each of
the spaces Vn and Vm has infinitely many orthonormal bases {|aji 2 Vn}



72 Linear Algebra

and {|bki 2 Vm} labeled by parameters a and b. Each pair of bases provides
a resolution of the identity operator In for Vn and Im for Vm

In =
nX

j=1

|ajihaj | and Im =
mX

k=1

|bkihbk| (1.409)

and lets us write linear operator A as

A = ImAIn =
mX

k=1

nX

j=1

|bkihbk|A|ajihaj | (1.410)

in which the hbk|A|aji are the elements of a complex m⇥ n matrix.
The singular-value decomposition of the linear operator A is a choice of

two special bases |aji and |bji that make hbk|A|aji = Sj�kj and so express
A as

A =
X

j

|bjiSjhaj | (1.411)

in which the sum is over the singular values Sj , which are positive.
The kets |aji of the special basis of the domain space Vn are the normalized

eigenstates of the hermitian operator A†A

A†A|aji = ej |aji. (1.412)

These states |aji are orthogonal because A†A is hermitian. The eigenvalue
ej is the squared length of the ket A|aji and so is positive or zero

haj |A†A|aji = ej haj |aji = ej � 0. (1.413)

The singular values are the square roots of these eigenvalues

Sj =
p
ej =

q
haj |A†A|aji. (1.414)

The kets |bji of the special basis of the image space Vm are the suitably
normalized images of the eigenstates |aji that have positive singular values
Sj > 0

|bji =
A|aji
Sj

. (1.415)

If Sj = 0, then there is no ket |bji. The special kets |bji are orthonormal

hbk|bji =
1

SkSj
hak|A†A|aji =

ej
SkSj

hak|aji =
ej

SkSj
�kj = �kj . (1.416)

The number of positive singular values, Sj > 0, is at most n. It also is at
most m because each nonzero ket |bji is an orthonormal vector in the space
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Vm which has only m dimensions. So the number of positive singular values,
Sj > 0, is at most min(m,n), the smaller of m and n.

The singular-value decomposition of the linear operator A then is the sum

A = AIn = A
nX

j=1

|ajihaj | =
nX

j=1

A |ajihaj | =
X

j,Sj>0

|bjiSj haj | (1.417)

in which at most min(m,n) of the singular values are positive.

Example 1.61 (Making the matrix from its singular values and eigenstates)
Suppose the special bras |aji are

ha1| =
1p
2

�
1 0 0 1

�
and ha2| =

1p
2

�
0 1 1 0

�
(1.418)

and the kets |bji are

|b1i =
1p
2

0

@
1
0
1

1

A and |b2i =

0

@
0
1
0

1

A . (1.419)

If the singular values are S1 = 3, S2 = 2, and S1 = 0, then the matrix A is

A =
3

2

0

@
1
0
1

1

A�1 0 0 1
�
+
p
2

0

@
0
1
0

1

A�0 1 1 0
�

=

0

@
3
2 0 0 3

2
0

p
2

p
2 0

3
2 0 0 3

2

1

A .

(1.420)

In terms of any two bases, |ki for k = 1, . . . ,m for the space Vm and |`i
for ` = 1, . . . , n for the space Vn, and their identity operators

Im =
mX

k=1

|kihk| and In =
nX

`=1

|`ih`| (1.421)

the singular-value decomposition of the linear operator A is

A =
mX

k=1

|kihk|A
nX

`=1

|`ih`| =
mX

k=1

nX

j=1

nX

`=1

|kihk|bjiSj haj |`ih`|

=
mX

k=1

mX

i=1

nX

j=1

nX

`=1

|kihk|biiSi �ijhaj |`ih`| = U ⌃V †.

(1.422)
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In this expansion, the k, i matrix element of the m ⇥ m unitary matrix U
is Uki = hk|bii, the i, j element of the m ⇥ n matrix ⌃ is ⌃ij = Sj �ij , and

the j, ` matrix element of the n⇥ n unitary matrix V † is V †
j` = haj |`i. Thus

V ⇤
`j = haj |`i, and so V`j = haj |`i⇤ = h`|aji.
The vectors |bji and |aji respectively are the left and right singular vec-

tors. Incidentally, the singular-value decomposition (1.417) shows that the
left singular vectors |bji are the eigenvectors of AA†

AA† =
nX

j=1

|bjiSj haj |
nX

k=1

|akiSk hbk| =
nX

j,k=1

|bjiSj haj |akiSk hbk|

=
nX

j,k=1

|bjiSj �jk Sk hbk| =
nX

j=1

|bjiS2
j hbj |

(1.423)

just as (1.412) the right singular vectors |aji are the eigenvectors of A†A.
The kets |aji whose singular values vanish, Sj = 0, are annihilated by A,

A|aji = 0, and so span the null space or kernel of the linear operator A.

Example 1.62 (Singular-Value Decomposition of a 2⇥ 1 Matrix) If G is
the 2⇥ 1 matrix

G =

✓
1
1

◆
, (1.424)

then its singular value decomposition as given by the Matlab command
[U,S,V] = svd(G) is

G = USV † =
1p
2

✓
1 �1
1 1

◆✓p
2 0
0 0

◆�
1
�
. (1.425)

Example 1.63 (Singular-Value Decomposition of a 2⇥ 3 Matrix) If A is

A =

✓
0 1 0
1 0 1

◆
(1.426)

then the positive hermitian matrix A†A is

A†A =

0

@
1 0 1
0 1 0
1 0 1

1

A . (1.427)
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The normalized eigenvectors and eigenvalues of A†A are

|a1i =
1p
2

0

@
1
0
1

1

A , |a2i =

0

@
0
1
0

1

A , |a3i =
1p
2

0

@
�1
0
1

1

A (1.428)

and their eigenvalues are e1 = 2, e2 = 1, and e3 = 0. The third eigenvalue
e3 had to vanish because A is a 3⇥ 2 matrix.

The vector A|a1i (as a row vector) is (0,
p
2), and its norm is

p
2, so the

normalized vector is |b1i = (0, 1). Similarly, the vector |b2i is A|a2i = (1, 0).
The SVD of A then is

A =
2X

n=1

|bjiSjhaj | = U⌃V † (1.429)

where Sn =
p
en. The unitary matrices are Uk,n = hk|bni and V`,j = h`|aji

are

U =

✓
0 1
1 0

◆
and V =

1p
2

0

@
1 0 �1
0

p
2 0

1 0 1

1

A (1.430)

and the diagonal matrix ⌃ is

⌃ =

✓p
2 0 0
0 1 0

◆
. (1.431)

So finally the SVD of A = U⌃V † is

A =

✓
0 1
1 0

◆✓p
2 0 0
0 1 0

◆
1p
2

0

@
1 0 1
0

p
2 0

�1 0 1

1

A . (1.432)

The null space or kernel of A is the set of vectors that are real multiples
c|a3i of the eigenvector |a3i which has a zero eigenvalue, e3 = 0. It is the
third column of the matrix V displayed in (1.430).

Example 1.64 (Matlab’s singular-value decomposition) Matlab’s com-
mand [U,S,V] = svd(X) performs the singular-value decomposition (SVD)
of the matrix X. For instance

>> X = rand(3,3) + i*rand(3,3)

0.6551 + 0.2551i 0.4984 + 0.8909i 0.5853 + 0.1386i

X = 0.1626 + 0.5060i 0.9597 + 0.9593i 0.2238 + 0.1493i

0.1190 + 0.6991i 0.3404 + 0.5472i 0.7513 + 0.2575i

>> [U,S,V] = svd(X)
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-0.3689 - 0.4587i 0.4056 - 0.2075i 0.4362 - 0.5055i

U = -0.3766 - 0.5002i -0.5792 - 0.2810i 0.0646 + 0.4351i

-0.2178 - 0.4626i 0.1142 + 0.6041i -0.5938 - 0.0901i

2.2335 0 0

S = 0 0.7172 0

0 0 0.3742

-0.4577 0.5749 0.6783

V = -0.7885 - 0.0255i -0.6118 - 0.0497i -0.0135 + 0.0249i

-0.3229 - 0.2527i 0.3881 + 0.3769i -0.5469 - 0.4900i .

The singular values are 2.2335, 0.7172, and 0.3742.

We may use the SVD to solve, when possible, the matrix equation

A |xi = |yi (1.433)

for the n-dimensional vector |xi in terms of the m-dimensional vector |yi
and the m⇥ n matrix A. Using the SVD expansion (1.417), we have

min(m,n)X

j=1

|bjiSj haj |xi = |yi. (1.434)

The orthonormality (1.416) of the vectors |bji then tells us that

Sj haj |xi = hbj |yi. (1.435)

If the singular value is positive, Sj > 0, then we may divide by it to get
haj |xi = hbj |yi/Sj and so find the solution

|xi =
min(m,n)X

j=1

hbj |yi
Sj

|aji. (1.436)

But this solution is not always available or unique.
For instance, if for some ` the inner product hb`|yi 6= 0 while the singular

value S` = 0, then there is no solution to equation (1.433). This problem
occurs when m > n because there are at most n < m nonzero singular
values.
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Example 1.65 Suppose A is the 3⇥ 2 matrix

A =

0

@
r1 p1
r2 p2
r3 p3

1

A (1.437)

and the vector |yi is the cross-product |yi = L = r⇥p. Then no solution |xi
exists to the equation A|xi = |yi (unless r and p are parallel) because A|xi
is a linear combination of the vectors r and p while |yi = L is perpendicular
to both r and p.

Even when the matrix A is square, the equation (1.433) sometimes has
no solutions. For instance, if A is a square defective matrix (section 1.28),
then A|xi = |yi will fail to have a solution when the vector |yi lies outside
the space spanned by the linearly dependent eigenvectors of the matrix A.
And when n > m, as in for instance

✓
a b c
d e f

◆0

@
x1
x2
x3

1

A =

✓
y1
y2

◆
(1.438)

the solution (1.436) is never unique, for we may add to it any linear combi-
nation of the vectors |aji that have zero as their singular values

|xi =
min(m,n)X

j=1

hbj |yi
Sn

|aji+
X

j,Sj=0

xj |aji (1.439)

of which there are at least n�m.

Example 1.66 (CKM matrix) In the standard model, the mass matri-
ces of the u, c, t and d, s, b quarks are 3 ⇥ 3 complex matrices Mu and
Md with singular-value decompositions Mu = Uu⌃uV

†
u and Md = Ud⌃dV

†
d

whose singular-values are the quark masses. The unitary CKM matrix U †
uUd

(Cabibbo, Kobayashi, Maskawa) describes transitions among the quarks
mediated by the W± gauge bosons. By redefining the quark fields, one
may make the CKM matrix real, apart from a phase that violates charge-
conjugation-parity (CP ) symmetry.

The adjoint of a complex symmetric matrix M is its complex conjugate,
M † = M⇤. So by (1.412), its right singular vectors |ni are the eigenstates of
M⇤M

M⇤M |ni = S2
n|ni (1.440)
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and by (1.423) its left singular vectors |mni are the eigenstates of MM⇤

MM⇤|mni = (M⇤M)⇤ |mni = S2
n|mni. (1.441)

Thus its left singular vectors are the complex conjugates of its right singular
vectors, |mni = |ni⇤. So in its SVD M = U⌃V †, the unitary matrix V is the
complex conjugate of the unitary matrix U , and the SVD of M is (Autonne,
1915)

M = U⌃UT. (1.442)

1.35 Moore-Penrose pseudoinverse

Although a matrix A has an inverse A�1 if and only if it is square and has a
nonzero determinant, one may use the singular-value decomposition to make
a pseudoinverse A+ for an arbitrary m ⇥ n matrix A. If the singular-value
decomposition of the matrix A is

A = U ⌃V † (1.443)

then the Moore-Penrose pseudoinverse is.

A+ = V ⌃+ U † (1.444)

in which ⌃+ is the transpose of the matrix ⌃ with every nonzero entry
replaced by its (multiplicative) inverse (and the zeros left as they are). One
may show that the pseudoinverse (A+ = pinv(A) in Matlab) satisfies the
four relations

AA+A = A, A+AA+ = A+,
�
AA+

�†
= AA+, and

�
A+A

�†
= A+A

(1.445)

and that it is the only matrix that does so. (Eliakim H. Moore 1862–1932,
Roger Penrose 1931–)
Suppose that all the singular values of the m⇥n matrix A are positive. In

this case, if A has more rows than columns, so that m > n, then the product
A+A is the n⇥ n identity matrix In

A+A = V †⌃+⌃V = V †InV = In (1.446)

and AA+ is an m⇥m matrix that is not the identity matrix Im. If instead
A has more columns than rows, so that n > m, then AA+ is the m ⇥ m
identity matrix Im

AA+ = U⌃⌃+U † = UImU † = Im (1.447)
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and A+A is an n⇥n matrix that is not the identity matrix In. If the matrix
A is square with positive singular values, then it has a true inverse A�1

which is equal to its pseudoinverse

A�1 = A+. (1.448)

If the columns of A are linearly independent, then the matrix A†A has an
inverse, and the pseudoinverse is

A+ =
⇣
A†A

⌘�1
A†. (1.449)

The solution (1.260) to the complex least-squares method used this pseu-
doinverse.

If the rows of A are linearly independent, then the matrix AA† has an
inverse, and the pseudoinverse is

A+ = A†
⇣
AA†

⌘�1
. (1.450)

If both the rows and the columns of A are linearly independent, then the
matrix A has an inverse A�1 which is its pseudoinverse

A�1 = A+. (1.451)

Example 1.67 (The pseudoinverse of a 2 ⇥ 1 matrix) The Matlab com-
mand pinv(G) gives the pseudoinverse G+ of the matrix

G =

✓
1
1

◆
(1.452)

with singular-value decomposition (1.425) as

G+ = V ⌃+U † =
�
1
�✓1/

p
2 0

0 0

◆
1p
2

✓
1 1
�1 1

◆
=

1

2

�
1 1

�
. (1.453)

Example 1.68 (The pseudoinverse of a 2⇥ 3 matrix) The pseudoinverse
A+ of the matrix

A =

✓
0 1 0
1 0 1

◆
(1.454)

with singular-value decomposition (1.432) is

A+ = V ⌃+ U †

=
1p
2

0

@
1 0 �1
0

p
2 0

1 0 1

1

A

0

@
1/

p
2 0

0 1
0 0

1

A
✓
0 1
1 0

◆
=

0

@
0 1/2
1 0
0 1/2

1

A(1.455)
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which satisfies the four conditions (1.445). The product AA+ gives the 2⇥2
identity matrix

AA+ =

✓
0 1 0
1 0 1

◆ 0

@
0 1/2
1 0
0 1/2

1

A =

✓
1 0
0 1

◆
(1.456)

which is an instance of (1.447). Moreover, the rows of A are linearly inde-
pendent, and so the simple rule (1.450) works:

A+ = A†
⇣
AA†

⌘�1

=

0

@
1 0
0 1
1 0

1

A

0

@
✓
0 1 0
1 0 1

◆0

@
1 0
0 1
1 0

1

A

1

A
�1

=

0

@
1 0
0 1
1 0

1

A
✓
0 1
2 0

◆�1

=

0

@
1 0
0 1
1 0

1

A
✓
0 1/2
1 0

◆
=

0

@
0 1/2
1 0
0 1/2

1

A (1.457)

which is (1.455).
The columns of the matrix A are not linearly independent, however, and

so the simple rule (1.449) fails. Thus the product A+A

A+A =

0

@
0 1/2
1 0
0 1/2

1

A
✓
0 1 0
1 0 1

◆
=

1

2

0

@
1 0 1
0 2 0
1 0 1

1

A (1.458)

is not the 3⇥ 3 identity matrix which it would be if (1.449) held.

1.36 Tensor products and entanglement

Tensor products are used to describe composite systems. The tensor
product of a vector space S spanned by n orthonormal kets |ii and a vector
space T spanned by m orthonormal kets |ki is a vector space S⌦T spanned
by nm orthonormal kets |ii⌦ |ki. The inner product of two such kets |ii⌦ |ki
and |i0i ⌦ |k0i is

(hi0|⌦ hk0|)|ii ⌦ |ki = hi0|iihk0|ki = �i0,i �k,k0 . (1.459)

Tensor product states are often written without⌦ as |ii⌦|ki = |ii|ki = |i, ki.
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An arbitrary vector in the space S ⌦ T is of the form

| i =
nX

i=1

mX

k=1

 i,k |ii ⌦ |ki =
nX

i=1

mX

k=1

|i, kihi, k| i. (1.460)

The inner product of this vector with another vector in the tensor-product
space S ⌦ T

|�i =
nX

i=1

mX

k=1

�i,k |ii ⌦ |ki =
nX

i=1

mX

k=1

|i, kihi, k|�i (1.461)

is

h�| i =
nX

i0,i=1

mX

k0,k=1

hi0, k0|i, ki�⇤i0,k0 i,k =
nX

i=1

mX

k=1

�⇤i,k i,k. (1.462)

Vectors |�S ,�T i that are tensor products |�Si⌦ |�T i of a vector |�Si 2 S
and a vector |�T i 2 T

|�Si ⌦ |�T i =
 

nX

i=1

�i|ii
!

⌦
 

mX

k=1

�k|ki
!

=
nX

i=1

mX

k=1

�i�k|i, ki (1.463)

are separable. States represented by vectors that are not separable are said
to be entangled. Most states in a tensor-product space S⌦T are entangled.

If A is an n⇥n matrix with elements Aij and B is an m⇥m matrix with
elements Bk`, then their tensor product C = A⌦B is an nm⇥nm matrix
with elements Cik,j` = Aij Bk`. This tensor-product matrix A ⌦ B maps a
vector Vj` into the vector

Wik =
nX

j=1

mX

`=1

Cik,j` Vj` =
nX

j=1

mX

`=1

Aij Bk` Vj` (1.464)

in which the second double index j` of C and the second indices of A and
B match the double index j` of the vector V .
A tensor-product operator is a product of operators that act on di↵erent

vector spaces. Suppose that an operator A acts on a space S spanned by n
kets |ii, and that an operator B acts on a space T spanned by m kets |ki,
and that both operators map vectors into their spaces S and T . Then we
may write A as

A = ISAIS =
nX

i,j=1

|iihi|A|jihj| (1.465)
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and B as

B = ITBIT =
mX

k,s=1

|kihk|B|`ih`|. (1.466)

Their tensor product A⌦B is

A⌦B =
nX

i,j=1

mX

k,`=1

|ii ⌦ |ki hi|A|jihk|B|`i hj|⌦ h`|

=
nX

i,j=1

mX

k,`=1

|i, ki hi|A|jihk|B|`i hj, `| i.
(1.467)

and it acts on the tensor-product vector space S ⌦ T which is spanned by
the tensor-product kets |i, ki = |ii |ki = |ii ⌦ |ki and has dimension nm.
Just as separable states are special, so too tensor-product operators are

special cases of the more general linear operator on the space S ⌦ T

D =
nX

i,j=1

mX

k,`=1

|i, kihi, k|D|j, `ihj, `| (1.468)

which maps an arbitrary vector (1.460) into the vector

D | i =
nX

i,j=1

mX

k,`=1

|i, kihi, k|D|j, `ihj, `| i. (1.469)

Example 1.69 (States of the hydrogen atom) Suppose the state |n, `,mi
is an eigenvector of the hamiltonian H, the square L2 of the orbital angular
momentum L, and the third component of the orbital angular momentum
L3 of a hydrogen atom without spin:

H|n, `,mi = En|n, `,mi
L

2|n, `,mi = ~2`(`+ 1)|n, `,mi
L3|n, `,mi = ~m|n, `,mi. (1.470)

The state |n, `,mi = |ni ⌦ |`,mi is separable. Suppose the states |�i for
� = ± are eigenstates of the third component S3 of the operator S that
represents the spin of the electron

S3|�i = �
~
2
|�i. (1.471)

The separable, tensor-product states

|n, `,m,�i ⌘ |n, `,mi ⌦ |�i ⌘ |n, `,mi|�i (1.472)
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represent a hydrogen atom including the spin of its electron. These separable
states are eigenvectors of all four operators H, L2, L3, and S3:

H|n, `,m,�i = En|n, `,m,�i L
2|n, `,m,�i = ~2`(`+ 1)|n, `,m,�i

L3|n, `,m,�i = ~m|n, `,m,�i S3|n, `,m,�i = � 1
2~|n, `,m,�i.

(1.473)

Suitable linear combinations of these states are eigenstates of the square J2

of the composite angular momentum J = L + S as well as of J3, L3, and
S3. Many of these states are entangled.

Example 1.70 (Adding two spins) The smallest positive value of angular
momentum is ~/2. The spin-one-half angular -momentum operators S are
represented by three 2⇥ 2 matrices, Sa = 1

2~�a, the Pauli matrices

�1 =

✓
0 1
1 0

◆
, �2 =

✓
0 �i
i 0

◆
, and �3 =

✓
1 0
0 �1

◆
(1.474)

which are both hermitian and unitary. They map the basis vectors

|+i =
✓
1
0

◆
and |�i =

✓
0
1

◆
(1.475)

to �1|±i = |⌥i, �2|±i = ±i|⌥i, and �3|±i = ±|±i.
Suppose two spin operators S

(1) and S
(2) act on two spin-one-half sys-

tems with states |±i1 that are eigenstates of S(1)
3 and states |±i2 that are

eigenstates of S(2)
3

S(1)
3 |±i1 = ± 1

2~|±i1 and S(2)
3 |±i2 = ± 1

2~|±i2. (1.476)

Then the tensor-product states |±,±i = |±i1|±i2 = |±i1 ⌦ |±i2 are eigen-

states of both S(1)
3 and S(2)

3

S(1)
3 |±, s2i = ±1

2~ |+, s2i and S(2)
3 |s1,±i = ±1

2~ |s1,±i. (1.477)

These states also are eigenstates of the third component of the spin operator
of the combined system

S3 = S(1)
3 + S(2)

3 that is S3|s1, s2i = 1
2~ (s1 + s2) |s1, s2i. (1.478)

Thus S3|+,+i = ~|+,+i, and S3|�,�i = �~|�,�i, while S3|+,�i = 0 and
S3|�,+i = 0.
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Using the notation (1.475), we can compute the e↵ect of the operator S2

on the state |++i. We find for S2
1

S2
1 |++i =

⇣
S(1)
1 + S(2)

1

⌘2
|++i = ~2

4

⇣
�(1)1 + �(2)1

⌘2
|++i

= 1
2~

2
⇣
1 + �(1)1 �(2)1

⌘
|++i = 1

2~
2
⇣
|++i+ �(1)1 |+i�(2)1 |+i

⌘

= 1
2~

2 (|++i+ |��i) (1.479)

and leave S2
2 and S2

3 to exercise 1.36.

Example 1.71 (Entangled states) A neutral pion ⇡0 has zero angular
momentum and negative parity. Its mass is 135 MeV/c2 and 99% of them
decay into two photons with a mean lifetime of 8.5 ⇥ 10�17 s. A ⇡0 at rest
decays into two photons moving in opposite directions along the same axis,
and the spins of the photons must be either parallel to their momenta |+,+i,
positive helicity, or antiparallel to their momenta |�,�i, negative helicity.
Parity reverses helicity, and so the state of negative parity and zero angular
momentum is

|�, �i = 1p
2

⇣
|+,+i � |�,�i

⌘
. (1.480)

The two photons have the same helicity. If the helicity of one photon is
measured to be positive, then a measurement of the other photon will show
it to have positive helicity. The state is entangled.
One ⇡0 in 17 million will decay into a positron and an electron in a state

of zero angular momentum. The spin part of the final state is

|e+, e�i = 1p
2

⇣
|+,�i � |�,+i

⌘
. (1.481)

If the spin along any axis of one of the electrons is measured to be positive,
then a measurement of the spin of the other electron along the same axis
will be negative. The state is entangled.

1.37 Density operators

A general quantum-mechanical system is represented by a density op-
erator ⇢ that is hermitian ⇢† = ⇢, of unit trace Tr⇢ = 1, and positive
h |⇢| i � 0 for all kets | i.
If the state | i is normalized, then h |⇢| i is the nonnegative probability
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that the system is in that state. This probability is real because the density
matrix is hermitian. If {|ki} is any complete set of orthonormal states

I =
X

k

|kihk| (1.482)

then the probability that the system is in the state |ki is

pk = hk|⇢|ki = Tr (⇢|kihk|) . (1.483)

Since Tr⇢ = 1, the sum of these probabilities is unity

X

k

pk =
X

k

hk|⇢|ki = Tr

 
⇢
X

k

|kihk|
!

= Tr (⇢I) = Tr⇢ = 1. (1.484)

A system that is measured to be in a state |ki cannot simultaneously be
measured to be in an orthogonal state |`i. The probabilities sum to unity
because the system must be in some state.
Since the density operator ⇢ is hermitian and positive, it has a complete,

orthonormal set of eigenvectors |ki all of which have nonnegative eigenvalues,
⇢|ki = ⇢k|ki with ⇢k � 0. They a↵ord for it an expansion in their outer
products

⇢ =
X

k

⇢k|kihk| (1.485)

each weighted by the probability ⇢k that the system is in the state |ki.
A system composed of two systems, one with basis kets |ii and the other

with basis kets |ki, has basis states |i, ki = |ii|ki and can be described by
the density operator

⇢ =
X

ijk`

|i, kihi, k|⇢|j, `ihj, `|. (1.486)

The density operator for the first system is the trace of ⇢ over the states |ki
of the second system

⇢1 =
X

k

hk|⇢|ki =
X

ijk

|iihi, k|⇢|j, kihj| (1.487)

and similarly the density operator for the second system is the trace of ⇢
over the states |ii of the first system

⇢2 =
X

i

hi|⇢|ii =
X

jk`

|kihi, k|⇢|i, `ih`|. (1.488)

For n = 1 and 2, the entanglement entropy of system n, is the entropy
Sn = � kTr(⇢n log ⇢n) of the reduced density matrix ⇢n.
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Classical entropy is an extensive quantity like volume, mass, and en-
ergy. The classical entropy of a composite system is the sum of the classical
entropies of its parts. But quantum entropy S = �kTr(⇢ log ⇢) is not neces-
sarily extensive. The quantum entropy of an entangled system can be less
than the sum of the entanglement entropies of its parts. The quantum en-
tropy of each of the eigenstates |�, �i and |e+, e�i of example 1.71 is zero,
but the sum of the entanglement entropies of their parts is 2k log 2 in both
cases.

1.38 Schmidt decomposition

Suppose | i is an arbitrary vector in the tensor product of the vector spaces
B and C

| i =
nX

i=1

mX

k=1

Aik |ii ⌦ |ki. (1.489)

The arbitrary matrix A has a singular-value decomposition (1.408)

Aik =

min(n,m)X

`=1

Ui` S` V
†
`k. (1.490)

In terms of this SVD, the vector | i is

| i =
nX

i=1

mX

k=1

min(n,m)X

`=1

Ui` S` V
†
`k |ii ⌦ |ki

=

min(n,m)X

`=1

S` |U, `i ⌦ |V †, `i

(1.491)

where the state |U, `i is

|U, `i =
nX

i=1

Ui` |ii (1.492)

and is in the vector space B, and the state |V †, `i is

|V †, `i =
mX

k=1

V †
`k |ki (1.493)

and is in the vector space C. The states |U, `i and |V †, `i are orthonormal

hU, `|U, `0i = �``0 and hV †, `|V †, `0i = �``0 (1.494)
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because the matrices U and V are unitary.
The outer product of a tensor-product state (1.489) is a pure-state density

operator

⇢ = | ih | =
X

``0

S`S`0(|U, `i ⌦ |V †, `i)(hU, `0|⌦ hV †, `0|). (1.495)

Taking the trace over a complete set of orthonormal states in B or C, we
get the density operator ⇢ in the spaces B or C

⇢B = TrC(⇢) =
X

`00

hV †, `00|⇢|V †, `00i =
X

`

S2
` |U, `ihU, `|

⇢C = TrB(⇢) =
X

`00

hU, `00|⇢|U, `00i =
X

`

S2
` |V †, `ihV †, `|.

(1.496)

The density operators ⇢B and ⇢C have the same eigenvalues and therefore
the same von Neumann entropy

s(⇢B) = � kTrB(⇢B log ⇢B) = �k
X

`

S2
` log(S2

` )

s(⇢C) = � kTrC(⇢C log ⇢C) = �k
X

`

S2
` log(S2

` ).
(1.497)

The nonzero, positive singular values S` are called Schmidt coe�cients.
The number of them is the Schmidt rank or Schmidt number of the state
| i. The state | i is entangled if and only if its Schmidt rank is greater than
unity. For instance, the density operators |�, �ih�, �| and |e+, e�ihe+, e�| of
example 1.71 have Schmidt rank 2.

1.39 Correlation functions

We can define two Schwarz inner products for a density matrix ⇢. If |fi and
|gi are two states, then the inner product

(f, g) ⌘ hf |⇢|gi (1.498)

for g = f is nonnegative, (f, f) = hf |⇢|fi � 0, and satisfies the other
conditions (1.82, 1.83, & 1.85) for a Schwarz inner product.
The second Schwarz inner product applies to operators A and B and is

defined (Titulaer and Glauber, 1965) as

(A,B) = Tr
⇣
⇢A†B

⌘
= Tr

⇣
B⇢A†

⌘
= Tr

⇣
A†B⇢

⌘
. (1.499)

This inner product is nonnegative when A = B and obeys the other rules
(1.82, 1.83, & 1.85) for a Schwarz inner product.
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These two degenerate inner products are not inner products in the strict
sense of (1.82–1.88), but they are Schwarz inner products, and so (1.102–
1.103) they satisfy the Schwarz inequality (1.103)

(f, f)(g, g) � |(f, g)|2. (1.500)

Applied to the first, vector, inner product (1.498), the Schwarz inequality
gives

hf |⇢|fihg|⇢|gi � |hf |⇢|gi|2 (1.501)

which is a useful property of density matrices. Application of the Schwarz
inequality to the second inner product (1.499) gives (Titulaer and Glauber,
1965)

Tr
⇣
⇢A†A

⌘
Tr
⇣
⇢B†B

⌘
�
���Tr
⇣
⇢A†B

⌘���
2
. (1.502)

The operator Ei(x) that represents the ith component of the electric field

at the point x is the hermitian sum of the positive-frequency part E(+)
i (x)

and its adjoint E(�)
i (x) = (E(+)

i (x))†

Ei(x) = E(+)
i (x) + E(�)

i (x). (1.503)

Glauber has defined the first-order correlation functionG(1)
ij (x, y) as (Glauber,

1963b)

G(1)
ij (x, y) = Tr

⇣
⇢E(�)

i (x)E(+)
j (y)

⌘
(1.504)

or in terms of the operator inner product (1.499) as

G(1)
ij (x, y) =

⇣
E(+)

i (x), E(+)
j (y)

⌘
. (1.505)

By setting A = E(+)
i (x) and B = E(+)

j (y) in the Schwarz inequality (1.502),

we find that the correlation function G(1)
ij (x, y) is bounded by

���G(1)
ij (x, y)

���
2
 G(1)

ii (x, x)G(1)
jj (y, y). (1.506)

Interference fringes are sharpest when this inequality is saturated
���G(1)

ij (x, y)
���
2
= G(1)

ii (x, x)G(1)
jj (y, y) (1.507)

which can occur only if the correlation function G(1)
ij (x, y) factorizes (Titu-

laer and Glauber, 1965)

G(1)
ij (x, y) = E⇤

i (x)Ej(y) (1.508)
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as it does when the density operator is an outer product of coherent states

⇢ = |{↵k}ih{↵k}| (1.509)

which are eigenstates of E(+)
i (x) with eigenvalue Ei(x) (Glauber, 1963b,a)

E(+)
i (x)|{↵k}i = Ei(x)|{↵k}i. (1.510)

The higher-order correlation functions

G(n)
i1...i2n

(x1 . . . x2n) = Tr
⇣
⇢E(�)

i1
(x1) . . . E

(�)
in

(xn)E
(+)
in+1

(xn+1) . . . E
(+)
i2n

(x2n)
⌘

(1.511)
satisfy similar inequalities (Glauber, 1963b) which also follow from the
Schwarz inequality (1.502). (Roy Jay Glauber, 1925–2019)

1.40 Rank of a matrix

Four equivalent definitions of the rank R(A) of an m⇥ n matrix A are:

1. the number of its linearly independent rows,
2. the number of its linearly independent columns,
3. the number of its nonzero singular values, and
4. the number of rows in its biggest square nonsingular submatrix.

A matrix of rank zero has no nonzero singular values and so is zero.

Example 1.72 (Rank) The 3⇥ 4 matrix

A =

0

@
1 0 1 �2
2 2 0 2
4 3 1 1

1

A (1.512)

has three rows, so its rank can be at most 3. But twice the first row added
to thrice the second row equals twice the third row, 2r1 + 3r2 � 2r3 = 0, so
R(A)  2. The first two rows obviously are not parallel, so they are linearly
independent. Thus the number of linearly independent rows of A is 2, and
so A has rank 2.

1.41 Software

High-quality software for virtually all numerical problems in linear algebra
are available in the linear-algebra package Lapack. Lapack codes in Fortran
and C++ are available at netlib.org/lapack/ and at math.nist.gov/tnt/.
Apple’s Xcode command -framework accelerate links this software into gnu
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executables. The Basic Linear Algebra Subprograms (BLAS) on which La-
pack is based are also available in Java at icl.cs.utk.edu/f2j/ and at
math.nist.gov/javanumerics/.
Matlab solves a wide variety of numerical problems. A free gnu version

is available at gnu.org/software/octave/. Maple and Mathematica are
good commercial programs for numerical and symbolic problems. Python
(python.org), Scientific Python (scipy.org), Sage (sagemath.org), and
Cadabra (cadabra.science) are websites of free software of broad (and uni-
versal, Python) applicability. Maxima, xMaxima, and wxMaxima (maxima.
sourceforge.net) are free Lisp programs that excel at computer algebra.
Intel gives software to students and teachers (software.intel.com).

Exercises

1.1 What is the most general function of three Grassmann numbers ✓1, ✓2, ✓3?

1.2 Derive the cyclicity (1.27) of the trace from Eq. (1.26).

1.3 Show that (AB) T = BTAT, which is Eq.(1.30).

1.4 Show that a real hermitian matrix is symmetric.

1.5 Show that (AB)† = B†A†, which is Eq.(1.33).

1.6 Show that the matrix (1.45) is positive on the space of all real 2-vectors
but not on the space of all complex 2-vectors.

1.7 Show that the two 4 ⇥ 4 matrices (1.50) satisfy Grassmann’s algebra
(1.11) for n = 2.

1.8 Show that the operators ai = ✓i defined in terms of the Grassmann
matrices (1.50) and their adjoints a†i = ✓†i satisfy the anticommutation
relations (1.51) of the creation and annihilation operators for a system
with two fermionic states.

1.9 Derive (1.70) from (1.67–1.69).

1.10 Fill in the steps leading to the formulas (1.78) for the vectors b01 and
b02 and the formula (1.79) for the matrix a0.

1.11 Show that the antilinearity (1.85) of the inner product follows from its
first two properties (1.82 & 1.83).

1.12 Show that the Minkowski product (x, y) = x ·y�x0y0 of two 4-vectors
x and y is an inner product obeying the rules (1.82, 1.83, and 1.88).

1.13 Show that if f = 0, then the linearity (1.83) of the inner product
implies that (f, f) and (g, f) vanish.

1.14 Show that the condition (1.84) of being positive definite implies non-
degeneracy (1.88).
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1.15 Show that the nonnegativity (1.86) of the Schwarz inner product im-
plies the condition (1.87). Hint: the inequality (f � �g, f � �g) � 0
must hold for every complex � and for all vectors f and g.

1.16 Show that the inequality (1.110) follows from the Schwarz inequality
(1.109).

1.17 Show that the inequality (1.112) follows from the Schwarz inequality
(1.111).

1.18 Use the Gram-Schmidt method to find orthonormal linear combina-
tions of the three vectors

s1 =

0

@
1
0
0

1

A , s2 =

0

@
1
1
0

1

A , s3 =

0

@
1
1
1

1

A . (1.513)

1.19 Now use the Gram-Schmidt method to find orthonormal linear combi-
nations of the same three vectors but in a di↵erent order

s
0
1 =

0

@
1
1
1

1

A , s
0
2 =

0

@
1
1
0

1

A , s
0
3 =

0

@
1
0
0

1

A . (1.514)

Did you get the same orthonormal vectors as in the previous exercise?
1.20 Derive the linearity (1.132) of the outer product from its definition

(1.131).
1.21 Show that a linear operator A that is represented by a hermitian matrix

(1.174) in an orthonormal basis satisfies (g,A f) = (Ag, f).
1.22 Show that a unitary operator maps one orthonormal basis into another.
1.23 Show that the integral (1.195) defines a unitary operator that maps

the state |x0i to the state |x0 + ai.
1.24 For the 2⇥ 2 matrices

A =

✓
1 2
3 �4

◆
and B =

✓
2 �1
4 �3

◆
(1.515)

verify equations (1.229–1.231).
1.25 Derive the least-squares solution (1.260) for complex A, x, and y when

the matrix A†A is positive.
1.26 Show that the eigenvalues � of a unitary matrix are unimodular, that

is, |�| = 1.
1.27 What are the eigenvalues and eigenvectors of the two defective matrices

(1.298)?
1.28 Use (1.309) to derive expression (1.310) for the 2 ⇥ 2 rotation matrix

exp(�i✓ · �/2).
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1.29 Compute the characteristic equation for the matrix �i✓ · J in which
the generators are (Jk)ij = i✏ikj and ✏ijk is totally antisymmetric with
✏123 = 1.

1.30 Use the characteristic equation of exercise 1.29 to derive identities
(1.313) and (1.314) for the 3⇥3 real orthogonal matrix exp(�i✓ · J).

1.31 Show that the sum of the eigenvalues of a normal antisymmetric matrix
vanishes.

1.32 Consider the 2⇥ 3 matrix A

A =

✓
1 2 3
�3 0 1

◆
. (1.516)

Perform the singular value decomposition A = USV T, where V T the
transpose of V . Use Matlab or another program to find the singular
values and the real orthogonal matrices U and V .

1.33 Consider the 6 ⇥ 9 matrix A with elements Aj,k = x + xj + i(y � yk)
in which x = 1.1 and y = 1.02. Use Matlab or another program to find
the singular values, and the first left and right singular vectors.

1.34 Show that the totally antisymmetric Levi-Civita symbol ✏ijk where
✏123 = 1 satisfies the useful relation

3X

i=1

✏ijk ✏inm = �jn �km � �jm �kn. (1.517)

1.35 Consider the hamiltonian H = 1
2~!�3 where �3 is defined in (1.474).

The entropy S of this system at temperature T is S = �kTr [⇢ ln(⇢)]
in which the density operator ⇢ is

⇢ =
e�H/(kT )

Tr
⇥
e�H/(kT )

⇤ . (1.518)

Find expressions for the density operator ⇢ and its entropy S.

1.36 Use example 1.70 to find the action of the operator S2 =
⇣
S

(1) + S
(2)
⌘2

on the four states | ± ±i and then find the eigenstates and eigenvalues
of S2 in the space spanned by these four states.

1.37 A system that has three fermionic states has three creation operators a†i
and three annihilation operators ak which satisfy the anticommutation
relations {ai, a†k} = �ik and {ai, ak} = {a†i , a

†
k} = 0 for i, k = 1, 2,

3. The eight states of the system are |t, u, vi ⌘ (a†1)
t(a†2)

u(a†3)
v|0, 0, 0i.

We can represent them by eight 8-vectors each of which has seven 0’s
with a 1 in position 4t+ 2u+ v + 1. How big should the matrices that
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represent the creation and annihilation operators be? Write down the
three matrices that represent the three creation operators.

1.38 Show that the Schwarz inner product (1.498) is degenerate because
it can violate (1.88) for certain density operators and certain pairs of
states.

1.39 Show that the Schwarz inner product (1.499) is degenerate because
it can violate (1.88) for certain density operators and certain pairs of
operators.

1.40 The coherent state |{↵(k, `)}i is an eigenstate of the annihilation op-
erator a(k, `) with eigenvalue ↵(k, `) for each wavenumber k and po-
larization `, i.e., a(k, `)|{↵(k, `)}i = ↵(k, `)|{↵(k, `)}i. The positive-

frequency part E(+)
i (t,x) of the electric field is a sum over k and `

E(+)
i (t,x) =

X

k

2X

`=1

a(k, `) ei(k, `) e
i(k·x�!t) (1.519)

in which e(k, `) = k⇥ ✏(k, `) and ✏(k, `) is proportional to a polariza-

tion vector. Show that |{↵(k, `)}i is an eigenstate of E(+)
i (t,x) as in

(1.510) and find its eigenvalue E(+)
i (t,x).

1.41 Show that if X is a nondefective, nonsingular square matrix, then the
variation of the logarithm of its determinant is � ln(detX) = Tr(X�1�X).
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Vector Calculus

2.1 Derivatives and partial derivatives

The derivative of a function f(x) at a point x is the limit of the ratio

df(x)

dx
= lim

x0!x

f(x0)� f(x)

x0 � x
. (2.1)

Example 2.1 (Derivative of a monomial) Setting x0 = x + ✏ and letting
"! 0, we compute the derivative of xn as

dxn

dx
= lim

✏!0

(x+ ✏)n � xn

✏
⇡ xn + ✏nxn�1 � xn

✏
= nxn�1. (2.2)

Similarly, adding fractions, we find

dx�n

dx
= lim

✏!0

(x+ ✏)�n � x�n

✏
⇡ xn � (xn + ✏nxn�1)

✏x2n
= �nx�n�1. (2.3)

The partial derivative of a function with respect to a given variable is
the whole derivative of the function with its other variables held constant.
For instance, the partial derivatives of the function f(x, y, z) = x` yn/zm

with respect to x and z are

@f(x, y, z)

@x
= `

x`�1 yn

zm
and

@f(x, y, z)

@z
= �m

x` yn

zm+1
. (2.4)

One often uses primes or dots to denote derivatives as in

f 0 =
df

dx
, f 00 =

d2f

dx2
⌘ d

dx

✓
df

dx

◆
, ḟ =

df

dt
, and f̈ =

d2f

dt2
. (2.5)

For higher or partial derivatives, one sometimes uses superscripts

f (k) =
dkf

dxk
and f (k,`) =

@k+`f

@xk@y`
(2.6)
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or subscripts, sometimes preceded by commas

fx = f,x =
@f

@x
and fxyy = f,xyy =

@3f

@x@y2
. (2.7)

If variables x = x1, . . . , xn are labeled by indexes, derivatives can be labeled
by subscripted indexes, sometimes preceded by commas

f,k = @kf =
@f

@xk
and f,k` = @k@`f =

@2f

@xk@x`
. (2.8)

2.2 Gradient

The change dp in a point p due to changes du1, du2, du3 in its orthogonal
coordinates u1, u2, u3 is a linear combination

dp =
@p

@u1
du1 +

@p

@u2
du2 +

@p

@u3
du3

= e1 du1 + e2 du2 + e3 du3

(2.9)

of vectors e1, e2, e3 that are orthogonal

ei · ek = hi hk �ik. (2.10)

In terms of the orthonormal vectors êj = ej/hj , the change dp is

dp = h1 ê1 du1 + h2 ê2 du2 + h3 ê3 du3. (2.11)

The orthonormal vectors êj have cyclic cross products

êi ⇥ êj =
3X

k=1

✏ijk êk (2.12)

in which ✏ijk is the antisymmetric Levi-Civita symbol (1.205) with ✏123 = 1.
In rectangular coordinates, the change dp in a physical point p due to

changes dx, dy, and dz in its coordinates is dp = x̂ dx+ ŷ dy+ ẑ dz, and the
scale factors are all unity hx = hy = hz = 1. In cylindrical coordinates, the
change dp in a point p due to changes d⇢, d�, and dz in its coordinates is
dp = ⇢̂ d⇢+⇢ �̂ d�+ ẑ dz, and the scale factors are h⇢ = 1, h� = ⇢, and hz =
1. In spherical coordinates, the change is dp = r̂ dr+r ✓̂ d✓+r sin ✓ �̂ d�, and
the scale factors are hr = 1, h✓ = r, and h� = r sin ✓. In these orthogonal
coordinates, the change in a point is

dp =

8
<

:

x̂ dx+ ŷ dy + ẑ dz

⇢̂ d⇢+ ⇢ �̂ d�+ ẑ dz

r̂ dr + r ✓̂ d✓ + r sin ✓ �̂ d�

. (2.13)
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Since in cylindrical and spherical coordinates a point p is

p = ⇢ cos� x̂+ ⇢ sin� ŷ + z ẑ = r sin ✓ cos� x̂+ r sin ✓ sin� ŷ + r cos ✓ ẑ,
(2.14)

the cylindrical and spherical basis vectors are (exercise 2.1)

⇢̂ = cos� x̂+ sin� ŷ

�̂ = � sin� x̂+ cos� ŷ
ẑ = ẑ

r̂ = sin ✓ cos� x̂+ sin ✓ sin� ŷ + cos ✓ ẑ

✓̂ = cos ✓ cos� x̂+ cos ✓ sin� ŷ � sin ✓ ẑ

�̂ = � sin� x̂+ cos� ŷ.
(2.15)

The gradient rf of a scalar function f is defined so that its dot product
rf · dp with the change dp in the point p is the change df in f

rf · dp = (rf1 ê1 +rf2 ê2 +rf3 ê3) · (ê1h1du1 + ê2h2du2 + ê3h3du3)

= rf1 h1du1 +rf2 h2du2 +rf3 h3du3

= df =
@f

@u1
du1 +

@f

@u2
du2 +

@f

@u3
du3. (2.16)

Thus the gradient in orthogonal coordinates is

rf =
ê1

h1

@f

@u1
+

ê2

h2

@f

@u2
+

ê3

h3

@f

@u3
, (2.17)

and in rectangular, cylindrical, and spherical coordinates it is

rf =

8
>>>>>>><

>>>>>>>:

x̂
@f

@x
+ ŷ

@f

@y
+ ẑ

@f

@z

⇢̂
@f

@⇢
+
�̂

⇢

@f

@�
+ ẑ

@f

@z

r̂
@f

@r
+
✓̂

r

@f

@✓
+

�̂

r sin ✓

@f

@�

. (2.18)

In particular the gradient of 1/r is

r
✓
1

r

◆
= � r̂

r2
and r

✓
1

|r � r0|

◆
= � r � r

0

|r � r0|3 . (2.19)

In the last two formulas, the di↵erentiation is with respect to r, not r0.

2.3 Divergence

The divergence of a vector v in an infinitesimal cube C is defined as the
integral S of v over the surface of the cube divided by its volume V =
h1h2h3 du1du2du3. The surface integral S is the sum of the integrals of v1,
v2, and v3 over the cube’s three forward faces v1h2du2h3du3+v2h1du1h3du3+
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v3h1du1h2du2 minus the sum of the integrals of v1, v2, and v3 over the cube’s
three opposite faces. The surface integral is then

S =


@(v1h2h3)

@u1
+
@(v2h1h3)

@u2
+
@(v3h1h2)

@u3

�
du1du2du3. (2.20)

So the divergence r · v is the ratio S/V

r · v =
S

V
=

1

h1h2h3


@(v1h2h3)

@u1
+
@(v2h1h3)

@u2
+
@(v3h1h2)

@u3

�
. (2.21)

In rectangular coordinates, the divergence of a vector v = (vx, vy, vz) is

r · v =
@vx
@x

+
@vy
@y

+
@vz
@z

. (2.22)

In cylindrical coordinates, it is

r · v =
1

⇢


@(v⇢⇢)

@⇢
+
@v�
@�

+
@(vz⇢)

@z

�
=

1

⇢

@(⇢v⇢)

@⇢
+

1

⇢

@v�
@�

+
@vz
@z

, (2.23)

and in spherical coordinates it is

r · v =
1

r2
@(vr r2)

@r
+

1

r sin ✓

@(v✓ sin ✓)

@✓
+

1

r sin ✓

@v�
@�

. (2.24)

By assembling a suitable number of infinitesimal cubes, one may create
a three-dimensional region of arbitrary shape and volume. The sum of the
products of the divergencer · v in each cube times its volume dV is the sum
of the surface integrals dS over the faces of these tiny cubes. The integrals
over the interior faces cancel leaving just the integral over the surface @V of
the whole volume V . Thus we arrive at Stokes’s theorem

Z

V
r · v dV =

Z

@V
v · da (2.25)

in which da is an infinitesimal, outward, area element of the surface that is
the boundary @V of the volume V .

Example 2.2 (Delta function) The integral of the divergence of the neg-
ative gradient r̂/r2 (2.19) of 1/r over any sphere, however small, centered
at the origin is 4⇡

Z
r ·

✓
r̂

r2

◆
dV =

Z
r̂

r2
· da =

Z
r̂

r2
· r2r̂ d⌦ =

Z
d⌦ = 4⇡. (2.26)

Similarly, the integral of the divergence of (r � r
0)/|r�r

0|3 over any sphere,
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however small, centered at r0 is 4⇡
Z

r ·
✓

r � r
0

|r � r0|3

◆
dV =

Z
r � r

0

|r � r0|3 · da

=

Z
r � r

0

|r � r0|3 · |r � r
0|2 r � r

0

|r � r0| d⌦ =

Z
d⌦ = 4⇡.

(2.27)

These divergences, vanishing for r 6= 0 and for r � r
0 6= 0, are examples of

delta functions (sections 2.6 and 3.11)

r ·
✓

r̂

r2

◆
= 4⇡�3(r) and r ·

✓
r � r

0

|r � r0|3

◆
= 4⇡�3(r � r

0) (2.28)

because if f(r) is any suitably smooth function, then the integral over any
volume that includes the point r0 is

Z
f(r)r ·

✓
r � r

0

|r � r0|3

◆
d3r = 4⇡ f(r0). (2.29)

Example 2.3 (Gauss’s laws) Gauss’s laws are that the divergence of the
magnetic induction vanishes and that the divergencer·E of the electric field
is the charge density ⇢ divided by the electric constant ✏0 = 8.854 ⇥ 10�12

F/m

r ·B = 0 and r ·E =
⇢

✏0
. (2.30)

So by Stokes’s theorem, the integral of the electric field over a surface @V
that bounds a volume V is the charge inside divided by ✏0

Z

@V
E · da =

Z

V
r ·E dV =

Z

V

⇢

✏0
dV =

QV

✏0
. (2.31)

2.4 Laplacian

The laplacian is the divergence (2.21) of the gradient (2.17). So in orthogonal
coordinates it is

4f ⌘ r2f ⌘ r · rf =
1

h1h2h3

"
3X

k=1

@

@uk

✓
h1h2h3
h2k

@f

@uk

◆#
. (2.32)

In rectangular coordinates, the laplacian is

4f =
@2f

@x2
+
@2f

@y2
+
@2f

@z2
. (2.33)
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In cylindrical coordinates, it is

4f =
1

⇢


@

@⇢

✓
⇢
@f

@⇢

◆
+

1

⇢

@2f

@�2
+ ⇢

@2f

@z2

�
=

1

⇢

@

@⇢

✓
⇢
@f

@⇢

◆
+

1

⇢2
@2f

@�2
+
@2f

@z2
,

(2.34)
and in spherical coordinates it is

4f =
1

r2 sin ✓


@

@r

✓
r2 sin ✓

@f

@r

◆
+

@

@✓

✓
sin ✓

@f

@✓

◆
+

@

@�

✓
1

sin ✓

@f

@�

◆�

=
1

r2
@

@r

✓
r2
@f

@r

◆
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@f

@✓

◆
+

1

r2 sin2 ✓

@2f

@�2
(2.35)

=
1

r

@2

@r2
�
rf
�
+

1

r2 sin ✓

@

@✓

✓
sin ✓

@f

@✓

◆
+

1

r2 sin2 ✓

@2f

@�2
.

Example 2.4 (Delta function as laplacian of 1/r) By combining the gra-
dient (2.19) of 1/r with the representation (2.28) of the delta function as a
divergence, we can write delta functions as laplacians (with respect to r)

�4
✓
1

r

◆
= 4⇡�3(r) and �4

✓
1

|r � r0|

◆
= 4⇡�3(r � r

0). (2.36)

Example 2.5 (Electric field of a uniformly charged sphere) The electric
field E = � r� � Ȧ in static problems is just the gradient E = � r� of
the scalar potential �. Gauss’s law (2.30) then gives us Poisson’s equation
r ·E = �4� = ⇢/✏0. Writing the laplacian in spherical coordinates (2.35)
and using spherical symmetry, we find

�1

r

d2

dr2
�
r�
�
=

⇢

✏0
(2.37)

in which ⇢ is the uniform charge density of the sphere. Integrating twice
and letting the constant a be �(r) at r = 0, we find the potential inside the
sphere to be �(r) = a � ⇢ r2/(6✏0). Outside the sphere, the charge density
vanishes, and so the second r-derivative of r� vanishes, (r�)00 = 0. Inte-
grating twice, we get for the potential outside the sphere �(r) = b/r after
dropping a constant term because �(r) ! 0 as r ! 1. The interior and
exterior solutions for the electric field E = �r� agree where the meet on
the surface of the sphere at r = R

E = r̂
⇢R

3✏0
= r̂

b

R2
. (2.38)

Thus b = ⇢R3/(3✏0). Matching the interior potential to the exterior potential
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on the surface of the sphere gives a = ⇢R2/(2✏0). So the potential of a
uniformly charged sphere of radius R is

�(r) =

⇢
⇢
�
R2 � r2/3

�
/(2✏0) r  R

⇢R3/(3✏0r) r � R
. (2.39)

2.5 Curl

The directed area dS of an infinitesimal rectangle whose sides are the tiny
perpendicular vectors hiêidui and hj êjduj (fixed i and j) is their cross-
product (2.12)

dS = hiêidui ⇥ hj êjduj =
3X

k=1

✏ijk êk hihj duiduj . (2.40)

The line integral of the vector f along the perimeter of this infinitesimal
rectangle is

I
f · dl =

✓
@ (hjfj)

@ui
� @ (hifi)

@uj

◆
dui duj . (2.41)

The curl r ⇥ f of a vector f is defined to be the vector whose dot product
with the area (2.40) is the line integral (2.41)

(r ⇥ f) · dS = (r⇥ f)k hihjduiduj =

✓
@ (hjfj)

@ui
� @ (hifi)

@uj

◆
dui duj

(2.42)
in which i, j, k are 1, 2, 3 or a cyclic permutation of 1, 2, 3. Thus the kth
component of the curl is

(r⇥ f)k =
3X

i,j=1

✏ijk
hihj

@(hjfj)

@ui
, (2.43)

and the curl is the vector field

r ⇥ f =
3X

i,j,k=1

✏ijk
êk

hihj

@(hjfj)

@ui
. (2.44)

In rectangular coordinates, the scale factors are all unity, and the ith
component of the curl r ⇥ f is

(r⇥ f)i =
3X

j,k=1

✏ijk
@fk
@xj

=
3X

j,k=1

✏ijk @j fk. (2.45)
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We can write the curl as a determinant

r ⇥ f =
1

h1h2h3

������

h1ê1 h2ê2 h3ê3
@1 @2 @3
h1f1 h2f2 h3f3

������
. (2.46)

In rectangular coordinates, the curl is

r ⇥ f =

������

x̂ ŷ ẑ

@x @y @z
fx fy fz

������
. (2.47)

In cylindrical coordinates, it is

r ⇥ f =
1

⇢

������

⇢̂ ⇢�̂ ẑ

@⇢ @� @z
f⇢ ⇢f� fz

������
(2.48)

and in spherical coordinates, it is

r ⇥ f =
1

r2 sin ✓

������

r̂ r ✓̂ r sin ✓ �̂
@r @✓ @�
fr r f✓ r sin ✓ f�

������
. (2.49)

Example 2.6 (Magnetic field in the z direction) The curl (2.48) of the
vector potential A = 1

2B0 ⇢ �̂ is B = r⇥A = B0 ẑ.

Sums of products of two Levi-Civita symbols (1.205) yield useful identities

3X

i=1

✏ijk✏imn = �jm�kn � �jn�km and
3X

i,j=1

✏ijk✏ijn = 2�kn (2.50)

in which �jm is Kronecker’s delta (1.38). Thus the curl of a curl is

⇥
r⇥ (r⇥A)]i =

3X

j,k,m,n=1

✏ijk@j✏kmn@mAn =
3X

j,m,n=1

(�im�jn � �in�jm)@j@mAn

(2.51)

= @ir ·A�4Ai or r⇥ (r⇥A) = r(r ·A)�4A.

By assembling a suitable set of infinitesimal rectangles dS, we may create
an arbitrary surface S. The surface integral of the dot product r ⇥ f · dS
over the tiny rectangles dS that make up the surface S is the sum of the
line integrals along the sides of these tiny rectangles. The line integrals over
the interior sides cancel leaving just the line integral along the boundary @S
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of the finite surface S. Thus the integral of the curl r ⇥ f of a vector f

over a surface is the line integral of the vector f along the boundary of the
surface Z

S
(r ⇥ f) · dS =

Z

@S
f · d` (2.52)

which is one of Stokes’s theorems.

Example 2.7 (Maxwell’s equations) In empty space, Maxwell’s equations
in SI units are r · E = 0,r · B = 0,r ⇥ E = �Ḃ, and c2r ⇥ B = Ė.
They imply that the voltage induced in a loop is the negative of the rate of
change of the magnetic induction through the loop

V =

I

@S
E · dx = � �̇B = �

Z

S
Ḃ · da (2.53)

and that the magnetic induction induced in a loop is the rate of change of
the electric flux through the loop divided by c2

B =

Z

@S
B · dx =

1

c2
�̇E =

1

c2

Z

S
Ė · da. (2.54)

Maxwell’s equations in empty space and the curl identity (2.51) imply that

r⇥ (r⇥E) = r(r ·E)�4E = �4E = �r⇥ Ḃ = �Ë/c2 (2.55)

r⇥ (r⇥B) = r(r ·B)�4B = �4B = r⇥ Ė/c2 = �B̈/c2 (2.56)

or

4E = Ë/c2 and 4B = B̈/c2. (2.57)

The exponentials E(k,!) = ✏ ei(k·r�!t) and B(k,!) = (k̂ ⇥ ✏/c) ei(k·r�!t)

with ! = |k|c and k̂ · ✏ = 0 obey these wave equations.

Example 2.8 (Helmholtz decomposition) We can use the delta-function
formula (2.36) to write any suitably smooth 3-dimensional vector field V (x)
as

V (x) = �
Z

V (r)4
✓

1

|r � x|

◆
d3r (2.58)

in which the derivatives r ·r = r2 = 4 can be both with respect to x or
both with respect to r. Taking them to be with respect to x, we have

V (x) = �r2
Z

V (r)

|r � x| d
3r. (2.59)
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We now use our formula (2.51) for the curl of a curl

r2
V = r(r · V )�r⇥ (r⇥ V ) (2.60)

to write V (x) as

V (x) = �r
✓
r ·

Z
V (r)

|r � x| d
3r

◆
+r⇥

✓
r⇥

Z
V (r)

|r � x| d
3r

◆
. (2.61)

Thus any suitably smooth 3-dimensional vector field V (x) can be written
as the sum

V (x) = r�(x) +r⇥A(x) (2.62)

of the gradient of a scalar field

�(x) = �r ·
Z

V (r)

|r � x| d
3r (2.63)

and the curl of a vector field

A(x) = r⇥
Z

V (r)

|r � x| d
3r (2.64)

(Hermann von Helmholtz, 1821–1894).

2.6 Dirac’s delta function

A function f is a map from numbers x to numbers f(x). A functional F is
a map from functions f to numbers F [f ]. Dirac’s delta function �(x� a) is
a functional �[f, a] that maps a function f to its value f(a) at a particular
point x = a. We may write this suggestively as

�[f, a] = f(a) =

Z
f(x) �(x� a) dx. (2.65)

The delta functional let’s one integrate by parts

� f 0(b) =

Z
f(x) �0(x� b) dx and f 00(c) =

Z
f(x) �00(x� c) dx. (2.66)

Delta functions of several variables obey the same rules. For instance, in
three dimensions

�[f,a] = f(a) =

Z
f(x) �(3)(x� a) d3x. (2.67)
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One may imagine �(x � a) to be a smooth function normalized to unity
and very sharply peaked at x = a like the ✏! 0 limit of the gaussians

1

(⇡✏2)1/2
exp

✓
�(x� b)2

✏2

◆
or

1

(⇡✏2)3/2
exp

✓
�x� c)2

✏2

◆
. (2.68)

Delta functions often are written as Fourier transforms (section 3.11).

2.7 Covariant and Contravariant Vectors

The coordinates of time and space are often variously labelled as x0 = t,
x1 = x, x2 = y, and x3 = z or as xi for i = 0, 1, 2, 3 or as x. Any one-to-
one, smooth change of variables from x to x0(x), is a general coordinate
transformation.
Under a general coordinate transformation x ! x0 derivatives transform

by the chain rule as

@

@x0i
=

3X

k=0

@xk

@x0i
@

@xk
for i = 0, 1, 2, 3. (2.69)

Any vector Vi that transforms this way

V 0
i =

3X

k=0

@xk

@x0i
Vk for i = 0, 1, 2, 3. (2.70)

under general coordinate transformations x ! x0 is a covariant vector.
The coordinate di↵erentials dx0i of the primed coordinates are related to

those of the unprimed coordinates dxk by the chain rule as

dx0i =
3X

k=0

@x0i

@xk
dxk for i = 0, 1, 2, 3. (2.71)

Any vector V i that transforms this way

V 0i =
3X

k=0

@x0i

@xk
V k for i = 0, 1, 2, 3 (2.72)

is a contravariant vector.
Covariant vectors @i and Vi have lowered indexes. Contravariant vectors

dxi and V i have raised indexes.
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Exercises

2.1 Use formulas (2.13 and 2.14) to derive (2.15).
2.2 Derive the first of the Levi-Civita identities (2.50).
2.3 Derive the second of the Levi-Civita identities (2.50).
2.4 Use the first of the Levi-Civita identities (2.50) to show that every

3-vector V can be expressed in terms of any nonzero 3-vector k as

V =
1

k · k

⇣
(k · V )k � k ⇥ (k ⇥ V )

⌘
. (2.73)

2.5 Show that

r⇥ (a⇥ b) = ar · b� br · a+ (b ·r)a� (a ·r)b. (2.74)

2.6 Simplify r⇥r� and r · (r⇥ a) in which � is a scalar field and a is
a vector field.

2.7 Simplify r · (r�⇥r ) in which � and  are scalar fields.
2.8 Let B = r⇥A and E = �r��Ȧ and show that Maxwell’s equations

in vacuum (example 2.7) and the Lorentz gauge condition

r ·A+ �̇/c2 = 0 (2.75)

imply that A and � obey the wave equations

4�� �̈/c2 = 0 and 4A� Ä/c2 = 0. (2.76)
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Fourier Series

3.1 Fourier series

The phases exp(inx)/
p
2⇡ for integer n are orthonormal on an interval of

length 2⇡
Z 2⇡

0

e�imx

p
2⇡

einxp
2⇡

dx =

Z 2⇡

0

ei(n�m)x

2⇡
dx = �m,n =

⇢
1 if m = n
0 if m 6= n

(3.1)

in which �n,m is Kronecker’s delta (1.38). So if a function f(x) is a sum of
these phases, called a Fourier Series,

f(x) =
1X

n=�1
fn

einxp
2⇡

, (3.2)

then the orthonormality (3.1) of these phases exp(inx)/
p
2⇡ gives the nth

coe�cient fn as the integral

Z 2⇡

0

e�inx

p
2⇡

f(x) dx =

Z 2⇡

0

e�inx

p
2⇡

1X

m=�1
fm

eimx

p
2⇡

dx =
1X

m=�1
�n,mfm = fn.

(3.3)
Fourier series can represent functions f(x) that are square integrable on the
interval 0 < x < 2⇡ (Joseph Fourier 1768–1830).
In Dirac’s notation, we interpret the phase

hx|ni = einxp
2⇡

(3.4)

as the inner product of the ket |ni with the bra hx|, and we assume that the
kets |xi and |ni form a complete sets of states that represent the identity
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operator as

I =

Z 2⇡

0
|xihx| dx =

1X

n=�1
|nihn|. (3.5)

In these terms, the orthonormality integral (3.1) says that the inner product
of |ni and |mi is unity when n = m and zero when n 6= m

hm|ni = hm|I|ni =
Z 2⇡

0
hm|xihx|ni dx =

Z 2⇡

0

ei(n�m)x

2⇡
dx = �m,n. (3.6)

Thus the kets |ni are orthonormal.
The representation (3.5) of the identity operator, together with the for-

mula (3.4) for hx|ni, shows that the inner product f(x) = hx|fi, which is the
component of the vector |fi in the |xi basis, is given by the Fourier series
(3.2)

f(x) = hx|fi = hx|I|fi =
1X

n=�1
hx|nihn|fi

=
1X

n=�1

einxp
2⇡

hn|fi =
1X

n=�1

einxp
2⇡

fn.

(3.7)

Similarly, the representation (3.5) of the identity operator shows that the
inner products fn = hn|fi, which are the components of the vector |fi in
the |ni basis, are the Fourier integrals (3.3)

fn = hn|fi = hn|I|fi =
Z 2⇡

0
hn|xihx|fi dx =

Z 2⇡

0

e�inx

p
2⇡

f(x) dx. (3.8)

The two representations (3.5) of the identity operator also give two ways of
writing the inner product hg|fi of two vectors |fi and |gi

hg|fi =
1X

n=�1
hg|nihn|fi =

1X

n=�1
g⇤nfn

=

Z 2⇡

0
hg|xihx|fi dx =

Z 2⇡

0
g⇤(x) f(x) dx.

(3.9)

When the vectors are the same, this identity shows that the sum of the
squared absolute values of the Fourier coe�cients fn is equal to the integral
of the squared absolute value |f(x)|2

hf |fi =
1X

n=�1
|hn|fi|2 =

1X

n=�1
|fn|2 =

Z 2⇡

0
|hx|fi|2 dx =

Z 2⇡

0
|f(x)|2 dx.

(3.10)
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The Fourier series (3.2 & 3.7) are periodic with period 2⇡ because the
phases hx|ni are periodic with period 2⇡, exp(in(x+2⇡)) = exp(inx). Thus
even if the function f(x) which we use in (3.3 and 3.8) to make the Fourier
coe�cients fn = hn|fi is not periodic, its Fourier series (3.2 and 3.7) will
nevertheless be strictly periodic, as illustrated by Figs. 3.2 and 3.4.
The complex conjugate of the Fourier series (3.2 and 3.7) is

f⇤(x) =
1X

n=�1
f⇤
n
e�inx

p
2⇡

=
1X

n=�1
f⇤
�n

einxp
2⇡

(3.11)

so the nth Fourier coe�cient fn(f⇤) for f⇤(x) is the complex conjugate of
the �nth Fourier coe�cient for f(x)

fn(f
⇤) = f⇤

�n(f). (3.12)

Thus if the function f(x) is real, then

fn(f) = fn(f
⇤) = f⇤

�n(f) or fn = f⇤
�n. (3.13)

Example 3.1 (Fourier Series by Inspection) The doubly exponential func-
tion exp(exp(ix)) has the Fourier series

exp
�
eix
�
=

1X

n=0

1

n!
einx (3.14)

in which n! = n(n� 1) . . . 1 is n-factorial with 0! ⌘ 1.

Example 3.2 (Beats) The sum of two sines f(x) = sin!1x + sin!2x of
similar frequencies !1 ⇡ !2 is the product (exercise 3.1)

f(x) = 2 cos 1
2(!1 � !2)x sin 1

2(!1 + !2)x. (3.15)

The first factor cos 1
2(!1 � !2)x is the beat; it modulates the second factor

sin 1
2(!1 + !2)x as illustrated by Fig. 3.1.

Example 3.3 (Laplace’s equation) The Fourier series (exercise 3.2)

f(⇢, ✓) =
1X

n=�1

⇣⇢
a

⌘|n|
"Z 2⇡

0
h(✓0)

e�in✓0

p
2⇡

d✓0
#

ein✓p
2⇡

(3.16)

(Ritt, 1970, p. 3) obeys Laplace’s equation (7.23)

1

⇢

d

d⇢

✓
⇢
df

d⇢

◆
+

1

⇢2
@2f

@✓2
= 0 (3.17)
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Beats

0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 3.1 The curve sin!1x + sin!2x for !1 = 30 and !2 = 32. Mat-
lab scripts for this chapter’s figures are in Fourier series at github.com/
kevinecahill.

for ⇢ < a and respects the boundary condition f(a, ✓) = h(✓).

3.2 The interval

In section 3.1, we singled out the interval [0, 2⇡], but to represent a periodic
function f(x) of period 2⇡, we could have used any interval of length 2⇡,
such as the interval [� ⇡,⇡] or [r, r + 2⇡]

fn =

Z r+2⇡

r
e�inx f(x)

dxp
2⇡

. (3.18)

This integral is independent of its lower limit r when the function f(x) is
periodic with period 2⇡. The choice r = �⇡ is often convenient. With this
choice of interval, the coe�cient fn is the integral (3.3) shifted by �⇡

fn =

Z ⇡

�⇡
e�inx f(x)

dxp
2⇡

. (3.19)

But if the function f(x) is not periodic with period 2⇡, then the Fourier
coe�cients (3.18) do depend upon the choice r of interval.
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Fourier series for e
�2|x|

-6 -4 -2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

Figure 3.2 The 10-term (dashes) Fourier series (3.24) for the function
exp(�2|x|) on the interval (�⇡,⇡) is plotted from �2⇡ to 2⇡. All Fourier
series are periodic, but the function exp(�2|x|) (solid) is not.

3.3 Where to Put the 2Pi’s

In sections 3.1–3.2, we used the orthonormal functions exp(inx)/
p
2⇡, and

so we had factors of 1/
p
2⇡ in the Fourier equations (3.2, 3.3, 3.7 , and 3.8).

One can avoid these square roots by setting dn = fn/
p
2⇡ and writing the

Fourier series (3.2) and the orthonormality relation (3.3) as

f(x) =
1X

n=�1
dn e

inx and dn =
1

2⇡

Z 2⇡

0
dx e�inx f(x) (3.20)

or by setting cn =
p
2⇡ fn and using the rules

f(x) =
1

2⇡

1X

n=�1
cne

inx and cn =

Z ⇡

�⇡
f(x) e�inx dx. (3.21)

The cost of these asymmetrical notations is that factors of 2⇡ pop up (exer-
cise 3.3) in equations (3.9 and 3.10) for the inner products hg|fi and hf |fi.

Example 3.4 (Fourier Series for exp(�m|x|)) Let’s compute the Fourier
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series for the real function f(x) = exp(�m|x|) on the interval (�⇡,⇡). Using
the shifted interval (3.19) and the 2⇡-placement convention (3.20), we find
that the coe�cient dn is the integral

dn =

Z ⇡

�⇡

dx

2⇡
e�inx e�m|x| (3.22)

which we may do as two simpler integrals

dn =

Z 0

�⇡

dx

2⇡
e(m�in)x +

Z ⇡

0

dx

2⇡
e�(m+in)x

=
1

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤ (3.23)

which shows that dn = d�n. Since m is real, the coe�cients dn also are
real, dn = d⇤n. They therefore satisfy the condition (3.13) that holds for real
functions, dn = d⇤�n, and give the Fourier series for exp(�m|x|) as

e�m|x| =
1X

n=�1
dne

inx =
1X

n=�1

1

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤
einx

=
(1� e�⇡m)

m⇡
+

1X

n=1

2

⇡

m

m2 + n2

⇥
1� (�1)n e�⇡m

⇤
cos(nx).

(3.24)

In Fig. 3.2, the 10-term (dashes) Fourier series for m = 2 is plotted from
x = �2⇡ to x = 2⇡. The function exp(�2|x|) itself is represented by a solid
line. Although exp(�2|x|) is not periodic, its Fourier series is periodic with
period 2⇡. The 10-term Fourier series represents the function exp(�2|x|)
quite well within the interval [�⇡,⇡].

In what follows, we usually won’t bother to use di↵erent letters to dis-
tinguish between the symmetric (3.2 and 3.3) and asymmetric conventions
(3.20 or 3.21) on the placement of the 2⇡’s.

3.4 Real Fourier series for real functions

The rules (3.1–3.3 and 3.18–3.21) for Fourier series are simple and apply
to functions that are continuous and periodic whether complex or real. If a
function f(x) is real, then its Fourier coe�cients obey the rule (3.13) that
holds for real functions, d�n = d⇤n. Thus d0 is real, d0 = d⇤0, and we may
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write the Fourier series (3.20) for a real function f(x) as

f(x) = d0 +
1X

n=1

dn e
inx +

�1X

n=�1
dn e

inx

= d0 +
1X

n=1

⇥
dn e

inx + d�n e
�inx

⇤
= d0 +

1X

n=1

⇥
dn e

inx + d⇤n e
�inx

⇤

= d0 +
1X

n=1

dn (cosnx+ i sinnx) + d⇤n (cosnx� i sinnx)

= d0 +
1X

n=1

(dn + d⇤n) cosnx+ i(dn � d⇤n) sinnx. (3.25)

In terms of the real coe�cients

an = dn + d⇤n and bn = i(dn � d⇤n), (3.26)

the Fourier series (3.25) of a real function f(x) is

f(x) =
a0
2

+
1X

n=1

an cosnx+ bn sinnx. (3.27)

Using the formulas (3.26) for an and (3.20) for dn as well as the reality of
the function f(x), we find that an is

an =

Z 2⇡

0

⇥
e�inx f(x) + einx f⇤(x)

⇤ dx

2⇡
=

Z 2⇡

0

�
e�inx + einx

�

2
f(x)

dx

⇡
.

(3.28)
So the coe�cient an of cosnx in (3.27) is the cosine integral of f(x)

an =

Z 2⇡

0
cosnx f(x)

dx

⇡
. (3.29)

Similarly, equations (3.20 and 3.26) and the reality of f(x) imply that the
coe�cient bn is the sine integral of f(x)

bn =

Z 2⇡

0
i

�
e�inx � einx

�

2
f(x)

dx

⇡
=

Z 2⇡

0
sinnx f(x)

dx

⇡
. (3.30)

The real Fourier series (3.27) and the cosine (3.29) and sine (3.30) integrals
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Fourier Series for x
2
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Figure 3.3 The function x2 (solid) and its Fourier series of 7 terms (dot
dash) and 20 terms (dashes). The Fourier series (3.37) for x2 quickly con-
verges well inside the interval (�⇡,⇡).

for the coe�cients an and bn also follow from the orthogonality relations
Z 2⇡

0
sinmx sinnx dx =

⇢
⇡ if n = m 6= 0
0 otherwise,

(3.31)

Z 2⇡

0
cosmx cosnx dx =

8
<

:

⇡ if n = m 6= 0
2⇡ if n = m = 0
0 otherwise, and

(3.32)

Z 2⇡

0
sinmx cosnx dx = 0 (3.33)

which hold for integer values of n and m.
If the function f(x) is periodic with period 2⇡, then instead of the interval

[0, 2⇡], one may choose any interval of length 2⇡ such as [�⇡,⇡].
What if a function f(x) is not periodic? The Fourier series for an aperi-

odic function is itself strictly periodic, is sensitive to its interval (r, r + 2⇡)
of definition, may di↵er somewhat from the function near the ends of the
interval, and usually di↵ers markedly from it outside the interval.

Example 3.5 (Fourier series for x2) The function x2 is even and so the
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integrals (3.30) for its sine Fourier coe�cients bn all vanish. Its cosine coef-
ficients an are given by (3.29)

an =

Z ⇡

�⇡
cosnx f(x)

dx

⇡
=

Z ⇡

�⇡
cosnxx2

dx

⇡
. (3.34)

Integrating twice by parts, we find for n 6= 0

an = � 2

n

Z ⇡

�⇡
x sinnx

dx

⇡
=


2x cosnx

⇡n2

�⇡

�⇡

= (�1)n
4

n2
(3.35)

and

a0 =

Z ⇡

�⇡
x2

dx

⇡
=

2⇡2

3
. (3.36)

Equation (3.27) now gives for x2 the cosine Fourier series

x2 =
a0
2

+
1X

n=1

an cosnx =
⇡2

3
+ 4

1X

n=1

(�1)n
cosnx

n2
. (3.37)

This series rapidly converges within the interval [�1, 1] as shown in Fig. 3.3,
but not near the endpoints ±⇡.

Example 3.6 (Gibbs overshoot) The function f(x) = x on the interval
[�⇡,⇡] is not periodic. So we expect trouble if we represent it as a Fourier
series. Since x is an odd function, equation (3.29) tells us that the coe�cients
an all vanish. By (3.30), the bn’s are

bn =

Z ⇡

�⇡

dx

⇡
x sinnx = 2 (�1)n+1 1

n
. (3.38)

As shown in Fig. 3.4, the series
1X

n=1

2 (�1)n+1 1

n
sinnx (3.39)

di↵ers by about 2⇡ from the function f(x) = x for �3⇡ < x < �⇡ and for
⇡ < x < 3⇡ because the series is periodic while the function x isn’t.
Within the interval (�⇡,⇡), the series with 100 terms is very accurate

except for x & �⇡ and x . ⇡, where it overshoots by about 9% of the
2⇡ discontinuity, a defect called a Gibbs overshoot (J. Willard Gibbs
1839–1903. Incidentally, Gibbs’s father helped defend the Africans of the
schooner La Amistad). Any time we use a Fourier series to represent an
aperiodic function, a Gibbs overshoot will occur near the endpoints of the
interval.



3.5 Stretched intervals 115

Gibbs overshoot for aperiodic functions
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Figure 3.4 (top) The Fourier series (3.39) for the function x (solid line)
with 10 terms ( dots) and 100 terms (solid curve) for �2⇡ < x < 2⇡. The
Fourier series is periodic, but the function x is not. (bottom) The di↵erences
between x and the 10-term ( dots) and the 100-term (solid curve) series on
(�⇡,⇡) exhibit a Gibbs overshoot of about 9% at x & �⇡ and at x . ⇡.

3.5 Stretched intervals

If the interval of periodicity is of length L instead of 2⇡, then we may use
the phases exp(i2⇡nx/

p
L) which are orthonormal on the interval [0, L]

Z L

0
dx

 
ei2⇡nx/Lp

L

!⇤
ei2⇡mx/L

p
L

= �nm. (3.40)

The Fourier series

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(3.41)

is periodic with period L. The coe�cient fn is the integral

fn =

Z L

0

e�i2⇡nx/L

p
L

f(x) dx (3.42)
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and the sum of the squares |fn|2 is the integral of |f(x)|2

1X

n=�1
|fn|2 =

Z L

0
|f(x)|2 dx. (3.43)

These relations (3.40–3.43) generalize to the interval [0, L] our earlier for-
mulas of section 3.1 for the interval [0, 2⇡].
If the function f(x) is periodic with period L, that is if f(x+nL) = f(x)

for any integer n, then we may shift the domain of integration by any real
number r

fn =

Z L+r

r

e�i2⇡nx/L

p
L

f(x) dx (3.44)

without changing the coe�cients fn. An obvious choice is r = �L/2 for
which (3.41) and (3.42) give

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

and fn =

Z L/2

�L/2

e�i2⇡nx/L

p
L

f(x) dx. (3.45)

If the function f(x) is real, then on the interval [0, L] in place of Eqs.(3.27),
(3.29), and (3.30), one has

f(x) =
a0
2

+
1X

n=1

an cos

✓
2⇡nx

L

◆
+ bn sin

✓
2⇡nx

L

◆
, (3.46)

an =
2

L

Z L

0
dx cos

✓
2⇡nx

L

◆
f(x), (3.47)

and

bn =
2

L

Z L

0
dx sin

✓
2⇡nx

L

◆
f(x). (3.48)

The corresponding orthogonality relations, which follow from Eqs.(3.31),
(3.32), & (3.33), are:

Z L

0
dx sin

✓
2⇡mx

L

◆
sin

✓
2⇡nx

L

◆
=

⇢
L/2 if n = m 6= 0
0 otherwise,

(3.49)

Z L

0
dx cos

✓
2⇡mx

L

◆
cos

✓
2⇡nx

L

◆
=

8
<

:

L/2 if n = m 6= 0
L if n = m = 0
0 otherwise, and

(3.50)

Z L

0
dx sin

✓
2⇡mx

L

◆
cos

✓
2⇡nx

L

◆
= 0. (3.51)

They hold for integer values of n and m, and they imply Eqs.(3.46)–3.48).
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3.6 Fourier Series of Functions of Several Variables

On an interval [0, L], the Fourier-series formulas (3.41 & 3.42) are

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

and fn =

Z L

0

e�2i⇡nx/L

p
L

f(x) dx. (3.52)

We may generalize these equations from one variable to m variables x =
(x1, . . . , xm) and n = (n1, . . . , nm) with n · x = n1x1 + . . .+ nmxm

f(x) =
1X

n1=�1
· · ·

1X

nm=�1
fn

ei2⇡n·x/L

Lm/2

fn =

Z L

0
dx1 . . .

Z L

0
dxm

e�2i⇡n·x/L

Lm/2
f(x).

(3.53)

3.7 Integration and Di↵erentiation of Fourier Series

What happens to the convergence of a Fourier series if we integrate or dif-
ferentiate term by term? If we integrate the series

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

(3.54)

then we get a series

F (x) =

Z x

0
dx0f(x0) =

f0p
L
x� i

p
L

2⇡

1X

n=�1

fn
n

⇣
ei2⇡nx/L � 1

⌘
(3.55)

that converges better because of the extra factor of 1/n. An integrated
function f(x) is smoother which makes its Fourier series converges better.
But if we di↵erentiate the same series, then we get a series

f 0(x) = i
2⇡

L3/2

1X

n=�1
n fn e

i2⇡nx/L (3.56)

that converges less well because of the extra factor of n. A di↵erentiated
function is rougher, and so its Fourier series converges less well.
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3.8 How Fourier series converge

A Fourier series represents a function f(x) as the limit of a sequence of
functions fN (x) given by

fN (x) =
NX

n=�N

fn
ei2⇡nx/Lp

L
in which fn =

Z L

0
f(x) e�i2⇡nx/L dxp

L
.

(3.57)
Since the exponentials are periodic with period L, a Fourier series always is
periodic. So if a function f(x) is not periodic, then its Fourier series will be
its periodic extension fp defined by

fp(x+ nL) = f(x) (3.58)

for all integers n and for 0  x  L.
A sequence of functions fN (x) converges to a function f(x) on a closed

interval [a, b] if for every ✏ > 0 and each point a  x  b, there exists an
integer N(✏, x) such that

|f(x)� fN (x)| < ✏ for all N > N(✏, x). (3.59)

If this holds for an N(✏, x) = N(✏) that is independent of x 2 [a, b], then the
sequence of functions fN (x) converges uniformly to f(x) on the interval
[a, b].
A function f(x) is continuous on an open interval (a, b) if for every

point a < x < b the two limits

f(x� 0) ⌘ lim
0<✏!0

f(x� ✏) and f(x+ 0) ⌘ lim
0<✏!0

f(x+ ✏) (3.60)

agree. If f(x) also has the limits f(a+0) = f(a) and f(b�0) = f(b), then f
is continuous on the closed interval [a, b]. A function continuous on a closed
interval [a, b] is bounded and integrable on that interval.
If a sequence of continuous functions fN (x) converges uniformly to a func-

tion f(x) on a closed interval a  x  b, then |fN (x) � f(x)| < ✏ for
N > N(✏), and so for N > N(✏)
����
Z b

a
fN (x) dx�

Z b

a
f(x) dx

���� 
Z b

a
|fN (x)� f(x)| dx < (b� a) ✏. (3.61)

Thus one may integrate a uniformly convergent sequence of continuous func-
tions on a closed interval [a, b] term by term

lim
N!1

Z b

a
fN (x) dx =

Z b

a
lim

N!1
fN (x) dx =

Z b

a
f(x) dx. (3.62)
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So if a Fourier series (3.2) converges uniformly, then the term-by-term inte-
gration implicit in the formula (3.3) for fn is permitted.

A function is piecewise continuous on [a, b] if it is continuous there
except for finite jumps from f(x�0) to f(x+0) at a finite number of points
x. At such jumps, we define the periodically extended function fp to be the
mean fp(x) = [f(x� 0) + f(x+ 0)]/2.
Fourier’s convergence theorem (Courant, 1937, p. 439): The Fourier

series of a function f(x) that is piecewise continuous with a piecewise con-
tinuous first derivative converges to its periodic extension fp(x). This con-
vergence is uniform on every closed interval on which the function f(x) is
continuous (and absolute if the function f(x) has no discontinuities). Exam-
ples 3.12 and 3.13 illustrate this result.
A function whose kth derivative is continuous is in class C

k. On the
interval [� ⇡,⇡], its Fourier coe�cients (3.21) are

fn =

Z ⇡

�⇡
f(x) e�inx dx. (3.63)

If f is both periodic and in Ck, then one integration by parts gives

fn =

Z ⇡

�⇡

⇢
d

dx


f(x)

e�inx

�in

�
� f 0(x)

e�inx

�in

�
dx =

Z ⇡

�⇡
f 0(x)

e�inx

in
dx

since the boundary terms cancel by periodicity, and k integrations by parts
give

fn =

Z ⇡

�⇡
f (k)(x)

e�inx

(in)k
dx (3.64)

since the derivatives f (`)(x) of a Ck periodic function also are periodic.
Moreover if f (k+1) is piecewise continuous, then

fn =

Z ⇡

�⇡

⇢
d

dx


f (k)(x)

e�inx

�(in)k+1

�
� f (k+1)(x)

e�inx

�(in)k+1

�
dx

=

Z ⇡

�⇡
f (k+1)(x)

e�inx

(in)k+1
dx.

(3.65)

Since f (k+1)(x) is piecewise continuous on the closed interval [� ⇡,⇡], it is
bounded there in absolute value by, let us say, M . So the Fourier coe�cients
of a Ck periodic function with f (k+1) piecewise continuous are bounded by

|fn| 
1

nk+1

Z ⇡

�⇡
|f (k+1)(x)| dx  2⇡M

nk+1
. (3.66)
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We often can carry this derivation one step further. In most simple exam-
ples, the piecewise continuous periodic function f (k+1)(x) actually is piece-
wise continuously di↵erentiable between its successive jumps at xj . In this
case, the derivative f (k+2)(x) is a piecewise continuous function plus a sum
of a finite number of delta functions with finite coe�cients. Thus we can
integrate once more by parts. If for instance the function f (k+1)(x) jumps J

times between �⇡ and ⇡ by �f (k+1)
j , then its Fourier coe�cients are

fn =

Z ⇡

�⇡
f (k+2)(x)

e�inx

(in)k+2
dx

=
JX

j=1

Z xj+1

xj

f (k+2)
pc (x)

e�inx

(in)k+2
dx+

JX

j=1

�f (k+1)
j

e�inxj

(in)k+2

(3.67)

in which the subscript pc means piecewise continuous. The Fourier coe�-
cients (3.67) then are bounded by

|fn| 
2⇡M

nk+2
(3.68)

in which M is related to the maximum absolute values of f (k+2)
pc (x) and of

the �f (k+1)
j . The Fourier series of periodic Ck functions converge rapidly if

k is big.

Example 3.7 (Fourier Series of a C0 Function) The function defined by

f(x) =

8
<

:

0 �⇡  x < 0
x 0  x < ⇡/2
⇡ � x ⇡/2  x  ⇡

(3.69)

is continuous on the interval [�⇡,⇡] and its first derivative is piecewise
continuous on that interval. By (3.66), its Fourier coe�cients fn should be
bounded by M/n. In fact they are (exercise 3.10) bounded by 2

p
2/⇡/n2 in

agreement with the stronger inequality (3.68)

fn =

Z ⇡

�⇡
f(x)e�inx dxp

2⇡
=

(�1)n+1

p
2⇡

(in � 1)2

n2
. (3.70)

Example 3.8 (Fourier Series for a C1 Function) The function defined
by f(x) = 1 + cos 2x for |x|  ⇡/2 and f(x) = 0 for |x| � ⇡/2 has a
periodic extension fp that is continuous with a continuous first derivative
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and a piecewise continuous second derivative. Its Fourier coe�cients (3.63)

fn =

Z ⇡/2

�⇡/2
(1 + cos 2x) e�inx dxp

2⇡
=

8 sinn⇡/2p
2⇡(4n� n3)

satisfy the inequalities (3.66) and (3.68) for k = 1.

Example 3.9 (Fourier Series for cosµx) The Fourier series for the even
function f(x) = cosµx has only cosines with coe�cients (3.29)

an =

Z ⇡

�⇡
cosnx cosµx

dx

⇡
=

Z ⇡

0
[cos(µ+ n)x+ cos(µ� n)x]

dx

⇡

=
1

⇡


sin(µ+ n)⇡

µ+ n
+

sin(µ� n)⇡

µ� n

�
=

2

⇡

µ(�1)n

µ2 � n2
sinµ⇡

(3.71)

which decrease only as 1/n2 because cosµx is not periodic on (�⇡,⇡) when
µ is not an integer. The series (3.27) then is

cosµx =
2µ sinµ⇡

⇡

✓
1

2µ2
� cosx

µ2 � 12
+

cos 2x

µ2 � 22
� cos 3x

µ2 � 32
+� . . .

◆
(3.72)

which is continuous at x = ±⇡ (Courant, 1937, chap. IX).

Example 3.10 (Sine as an infinite product) In our series (3.72) for cosµx,
we set x = ⇡, divide by sinµ⇡, replace µ with x, and so find for the cotangent
the expansion

cot⇡x =
2x

⇡

✓
1

2x2
+

1

x2 � 12
+

1

x2 � 22
+

1

x2 � 32
+ . . .

◆
(3.73)

or equivalently

cot⇡x� 1

⇡x
= �2x

⇡

✓
1

12 � x2
+

1

22 � x2
+

1

32 � x2
+ . . .

◆
. (3.74)

For 0  x  q < 1, the absolute value of the nth term on the right is less
than 2q/(⇡(n2 � q2)). Thus this series converges uniformly on [0, x], and so
we may integrate it term by term. We find (exercise 3.13)

⇡

Z x

0

✓
cot⇡t� 1

⇡t

◆
dt = ln

sin⇡x

⇡x
=

1X

n=1

Z x

0

�2t dt

n2 � t2
=

1X

n=1

ln


1� x2

n2

�
.

(3.75)
Exponentiating, we get the infinite-product formula

sin⇡x

⇡x
= exp

" 1X

n=1

ln

✓
1� x2

n2

◆#
=

1Y

n=1

✓
1� x2

n2

◆
(3.76)
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for the sine from which one can derive the infinite product (exercise 3.14)

cos⇡x =
1Y

n=1

 
1� x2

(n� 1
2)

2

!
(3.77)

for the cosine (Courant, 1937, chap. IX).

3.9 Measure and Lebesgue integration

Suppose S is a set of points x that lie in an interval a  x  b of length
b � a. All the points of S may also lie inside several subintervals [ai, bi],
i = 1, 2, . . . , the sum of whose lengths is b1�a1+b2�a2+ . . . . Now consider
all possible such sets of subintervals [ai, bi] that contain all the points of S
and let m be the greatest lower bound of the sum of their lengths. We may
do the same for the complementary set S0 consisting of all points of [a, b]
that do not lie in the set S. That is, we may let m0 be the greatest lower
bound of the sum of the lengths of all possible sets of subintervals [ci, di] that
contain all the points of S0. If m+m0 = b�a, then the set S is measurable
and m is its measure. Every countable set xi, i = 1, 2, . . . , has measure zero.
Suppose now that for a  x  b, all the values f(x) of a function f lie in

some finite interval J . We partition this interval J into disjoint subintervals
Jk and let Sk be the set of points of [a, b] that f maps into each subinterval
Jk. If for every subinterval Jk, the set Sk is measurable, then the function
f(x) is measurable or summable on [a, b]. Suppose that f is measurable
on this interval and let m(Sk) be the measure the set Sk. Then for each
subinterval Jk, we may pick any point xk 2 Sk and approximate the integral
of f over the interval [a, b] by the sum f(x1)m(S1)+f(x2)m(S2)+ . . . . This
sum converges (Courant and Hilbert, 1955, pp. 108–111) to the Lebesgue
integral as we refine the partition of the interval J into subintervals Jk such
that the length L of the longest subinterval goes to zero

lim
L!0

1X

k=1

f(xk)m(Sk) =

Z b

a
f(x) dx (3.78)

(Henri Lebesgue, 1875–1941).
Lebesgue integration generalizes Riemann integration and provides a more

natural basis for discussions of convergence. One important theorem result-
ing from measure theory is that of Riesz and Fischer (Hardy and Rogosinski,
1944, p. 16): If a sum

1X

n=�1
|fn|2 < 1 (3.79)
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converges, then

1. there is a function f that is square integrable in the sense of Lebesgue (f
is L2 on [a, b])

Z b

a
|f(x)|2 dx < 1 (3.80)

whose Fourier coe�cients are

fn =

Z b

a

e�2⇡inx/(b�a)

p
b� a

f(x) dx; (3.81)

2. the series

fN (x) =
NX

n=�N

fn
e2⇡inx/(b�a)

p
b� a

(3.82)

converges to f(x) in the mean,

lim
N!1

Z b

a
|fN (x)� f(x)|2 dx = 0; (3.83)

3. and
Z b

a
|f(x)|2 dx =

1X

n=�1
|fn|2 (3.84)

which is (3.43) for L = b� a.

Another version of the Riesz-Fischer theorem is that a function f(x) is square
integrable (3.80) on an interval [a, b] if and only if its Fourier series (3.82)
converges to it in the mean (3.83).
Fourier series can represent a much wider class of functions than those

that are continuous.

3.10 Quantum-mechanical examples

Suppose a particle of massm is trapped in an infinitely deep one-dimensional
square well of potential energy

V (x) =

⇢
0 if 0 < x < L
1 otherwise.

(3.85)
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The hamiltonian operator is

H = � ~2
2m

d2

dx2
+ V (x), (3.86)

in which ~ is Planck’s constant divided by 2⇡. This tiny bit of action, ~ =
1.055 ⇥ 10�34 J s, sets the scale below which quantum mechanics becomes
important.
An eigenfunction  (x) of the hamiltonian H with energy E satisfies the

equation H (x) = E (x) which breaks into two simple equations:

� ~2
2m

d2 (x)

dx2
= E (x) for 0 < x < L (3.87)

and

� ~2
2m

d2 (x)

dx2
+ 1 (x) = E (x) for x < 0 and for x > L. (3.88)

Every solution of these equations with finite energy E must vanish outside
the interval 0 < x < L. So we must find solutions of the first equation (3.87)
that satisfy the boundary conditions

 (x) = 0 for x  0 and x � L. (3.89)

For any integer n 6= 0, the continuous function

 n(x) =

r
2

L
sin
⇣⇡nx

L

⌘
for x 2 [0, L] (3.90)

and  n(x) = 0 for x /2 (0, L) satisfies the boundary conditions (3.89). When
inserted into equation (3.87)

� ~2
2m

d2

dx2
 n(x) =

~2
2m

⇣n⇡
L

⌘2
 n(x) = En n(x) (3.91)

it reveals its energy to be En = (n⇡~/L)2/2m.
These eigenfunctions  n(x) are complete in the sense that they span

the space of all functions f(x) that are square-integrable on the interval
(0, L) and vanish at its end points. They provide for such functions the sine
Fourier series

f(x) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(3.92)

which is periodic with period 2L and is the Fourier series for a function that
is odd f(�x) = �f(x) on the interval (�L,L) and zero at both ends.
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Fourier series for a piecewise continuous wave function
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Figure 3.5 The piecewise continuous wave function  (x, 0) for L = 2 (3.93,
straight solid lines) and its Fourier series (3.95) with 10 terms (solid curve)
and 100 terms (dashes). Gibbs overshoots occur near the discontinuities at
x = 1/2 and x = 3/2.

Example 3.11 (Time Evolution of an Initially Piecewise Continuous Wave
Function) Suppose now that at time t = 0 the particle is confined to the
middle half of the well with the square wave function

 (x, 0) =

r
2

L
for

L

4
< x <

3L

4
(3.93)

and zero otherwise. This piecewise continuous C�1 wave function is discon-
tinuous at x = L/4 and at x = 3L/4. Since the functions hx|ni =  n(x) are
orthonormal on [0, L]

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘ r 2

L
sin
⇣⇡mx

L

⌘
= �nm (3.94)

the coe�cients fn in the Fourier series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(3.95)
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Time evolution of | (x, t)|2 for a piecewise continuous wave function
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Figure 3.6 For length L = 2, the probability distributions P (x, t) =
| (x, t)|2 of the 1000-term Fourier series (3.99) for the wave function  (x, t)
at t = 0 (thick curve), t = 10�3 ⌧ (medium curve), and ⌧ = 2mL2/~ (thin
curve). The jaggedness of P (x, t) arises from the two discontinuities in the
initial wave function  (x, 0) (3.100) at x = L/4 and x = 3L/4. A Matlab
script for the figure is in Fourier series at github.com/kevinecahill.

are the inner products

fn = hn| , 0i =
Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0). (3.96)

They are proportional to 1/n in accord with (3.68)

fn =
2

L

Z 3L/4

L/4
dx sin

⇣⇡nx
L

⌘
=

2

⇡n


cos
⇣⇡n

4

⌘
� cos

✓
3⇡n

4

◆�
. (3.97)

Figure 3.5 plots the square wave function  (x, 0) (3.93, straight solid lines)
and its 10-term (solid curve) and 100-term (dashes) Fourier series (3.95) for
an interval of length L = 2. Gibbs’s overshoot reaches 1.093 at x = 0.52 for
100 terms and 1.0898 at x = 0.502 for 1000 terms (not shown), amounting
to about 9% of the unit discontinuity at x = 1/2. A similar overshoot occurs
at x = 3/2.
How does  (x, 0) evolve with time? Since  n(x), the Fourier component
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Fourier series of a continuous function
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Figure 3.7 The continuous wave function  (x, 0) (3.100, solid) and its 10-
term Fourier series (3.103–3.104, dashes) are plotted for the interval [0, 2].

(3.90), is an eigenfunction of H with energy En, the time-evolution operator
U(t) = exp(�iHt/~) takes  (x, 0) into

 (x, t) = e�iHt/~  (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�iEnt/~. (3.98)

Because En = (n⇡~/L)2/2m, the wave function at time t is

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2). (3.99)

It is awkward to plot complex functions, so Fig. 3.6 displays the probability
distributions P (x, t) = | (x, t)|2 of the 1000-term Fourier series (3.99) for the
wave function  (x, t) at t = 0 (thick curve), t = 10�3 ⌧ (medium curve), and
⌧ = 2mL2/~ (thin curve). The discontinuities in the initial wave function
 (x, 0) cause both the Gibbs overshoots at x = 1/2 and x = 3/2 seen in the
series for  (x, 0) plotted in Fig. 3.5 and the choppiness of the probability
distribution P (x, t) exhibited in Fig.(3.6).

Example 3.12 (Time Evolution of a Continuous Function) What does the
Fourier series of a continuous function look like? How does it evolve with
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Time evolution of | (x, t)|2 for a continuous wave function
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Figure 3.8 For the interval [0, 2], the probability distributions P (x, t) =
| (x, t)|2 of the 1000-term Fourier series (3.106) for the continuous wave
function  (x, t) (3.100) at t = 0, 10�2 ⌧ , 10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and
100⌧ are plotted as successively thinner curves. A Matlab script for the
figure is in Fourier series at github.com/kevinecahill.

time? Let us take as the wave function at t = 0 the C0 function

 (x, 0) =
2p
L

sin

✓
2⇡(x� L/4)

L

◆
for

L

4
< x <

3L

4
(3.100)

and zero otherwise. This initial wave function is a continuous function with
a piecewise continuous first derivative on the interval [0, L], and it satisfies
the periodic boundary condition  (0, 0) =  (L, 0). It therefore satisfies the
conditions of Fourier’s convergence theorem (Courant, 1937, p. 439), and so
its Fourier series converges uniformly (and absolutely) to  (x, 0) on [0, L].
As in Eq.(3.96), the Fourier coe�cients fn are given by the integrals

fn =

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0), (3.101)

which now take the form

fn =
2
p
2

L

Z 3L/4

L/4
dx sin

⇣⇡nx
L

⌘
sin

✓
2⇡(x� L/4)

L

◆
. (3.102)
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Doing the integral, one finds that for n 6= 2

fn = �
p
2

⇡

4

n2 � 4
[sin(3n⇡/4) + sin(n⇡/4)] (3.103)

while f2 = 0. These Fourier coe�cients satisfy the inequalities (3.66) and
(3.68) for k = 0. The factor of 1/n2 in fn guarantees the absolute convergence
of the series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
(3.104)

because asymptotically the coe�cient fn is bounded by |fn|  A/n2 where
A is a constant (A = 144/(5⇡

p
L) will do) and the sum of 1/n2 converges

to the Riemann zeta function (5.106)

1X

n=1

1

n2
= ⇣(2) =

⇡2

6
. (3.105)

Figure 3.7 plots the 10-term Fourier series (3.104) for  (x, 0) for L = 2.
Because this series converges absolutely and uniformly on [0, 2], the 100-
term and 1000-term series were too close to  (x, 0) to be seen clearly in the
figure and so were omitted.

As time goes by, the wave function  (x, t) evolves from  (x, 0) to

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2) (3.106)

in which the Fourier coe�cients are given by (3.103). Because  (x, 0) is
continuous and periodic with a piecewise continuous first derivative, its evo-
lution in time is much calmer than that of the piecewise continuous square
wave (3.93). Figure 3.8 shows this evolution in successively thinner curves
at times t = 0, 10�2 ⌧ , 10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and 100⌧ . The curves at
t = 0 and t = 10�2 ⌧ are smooth, but some wobbles appear at t = 10�1 ⌧
and at t = ⌧ due to the discontinuities in the first derivative of  (x, 0) at
x = 0.5 and at x = 1.5.

Example 3.13 (Time Evolution of a Smooth Wave Function) Finally, let’s
try a wave function  (x, 0) that is periodic and infinitely di↵erentiable on
[0, L]. An infinitely di↵erentiable function is said to be smooth or C1. The
infinite square-well potential V (x) of equation (3.85) imposes the periodic
boundary conditions  (0, 0) =  (L, 0) = 0, so we try

 (x, 0) =

r
2

3L


1� cos

✓
2⇡x

L

◆�
. (3.107)
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Fourier series of a smooth function
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Figure 3.9 The wave function  (x, 0) (3.107) is infinitely di↵erentiable, and
so the first 10 terms of its uniformly convergent Fourier series (3.110) o↵er
a very good approximation to it.

Its Fourier series

 (x, 0) =

r
1

6L

⇣
2� e2⇡ix/L � e�2⇡ix/L

⌘
(3.108)

has coe�cients that satisfy the upper bounds (3.66) by vanishing for |n| > 1.
The coe�cients of the Fourier sine series for the wave function  (x, 0) are

given by the integrals (3.96)

fn =

Z L

0
dx

r
2

L
sin
⇣⇡nx

L

⌘
 (x, 0)

=
2p
3L

Z L

0
dx sin

⇣⇡nx
L

⌘
1� cos

✓
2⇡x

L

◆�

=
8 [(�1)n � 1]

⇡
p
3n(n2 � 4)

(3.109)

with all the even coe�cients zero, f2n = 0. The fn’s are proportional to 1/n3

which is more than enough to ensure the absolute and uniform convergence
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Time evolution of | (x, t)|2 for a smooth wave function
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Figure 3.10 The probability distributions P (x, t) = | (x, t)|2 of the 1000-
term Fourier series (3.111) for the wave function  (x, t) at t = 0, 10�2 ⌧ ,
10�1 ⌧ , ⌧ = 2mL2/~, 10⌧ , and 100⌧ are plotted as successively thinner
curves. The time evolution is calm because the wave function  (x, 0) is
smooth.

of its Fourier sine series

 (x, 0) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
. (3.110)

As time goes by, it evolves to

 (x, t) =
1X

n=1

fn

r
2

L
sin
⇣⇡nx

L

⌘
e�i~(n⇡)2t/(2mL2) (3.111)

and remains absolutely convergent for all times t.
The e↵ects of the absolute and uniform convergence with fn / 1/n3 are

obvious in the graphs. Figure 3.9 shows (for L = 2) that only 10 terms
are required to nearly overlap the initial wave function  (x, 0). Figure 3.10
shows that the evolution of the probability distribution | (x, t)|2 with time is
smooth, with no sign of the jaggedness of Fig. 3.6 or the wobbles of Fig. 3.8.
Because  (x, 0) is smooth and periodic, it evolves calmly as time passes.
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3.11 Dirac’s delta function

A Dirac delta function is a (continuous, linear) map from a space of suitably
well-behaved functions into the real or complex numbers. It is a functional
that associates a number with each function in the function space. Thus
�(x� y) associates the number f(y) with the function f(x). We may write
this association as

f(y) =

Z
f(x) �(x� y) dx. (3.112)

Delta functions pop up all over physics. Multiplying the identity operator
(3.5)

I =

Z 2⇡

0
|xihx| dx (3.113)

from the right by |fi and from the left by hy|, we get

f(y) = hy|fi = hy|I|fi =
Z 2⇡

0
hy|xihx|fi dx =

Z 2⇡

0
hy|xif(x) dx (3.114)

which says that the inner product hy|xi is a delta function

hy|xi = hx|yi = �(x� y). (3.115)

Using both Fourier-series formulas (3.2) and (3.3), we get

fp(x) =
1X

n=�1
fn

einxp
2⇡

=
1X

n=�1

Z 2⇡

0

e�iny

p
2⇡

f(y)
einxp
2⇡

dy (3.116)

in which the function fp on the left-hand side of this equation is the pe-
riodic extension (3.58) fp of f if f is not itself periodic with period 2⇡.
Interchanging and rearranging, we have

fp(x) =

Z 2⇡

0

 1X

n=�1

ein(x�y)

2⇡

!
fp(y) dy. (3.117)

But the phases einx are periodic with period 2⇡, so we also have

fp(x+ 2⇡`) =

Z 2⇡

0

 1X

n=�1

ein(x�y)

2⇡

!
fp(y) dy. (3.118)

Thus we arrive at the Dirac comb
1X

n=�1

ein(x�y)

2⇡
=

1X

`=�1
�(x� y � 2⇡`) (3.119)
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Cosine series for Dirac comb
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Figure 3.11 The sum of the first 100,000 terms of the series (3.120) for the
Dirac comb is plotted for �15  x  15. Both Dirac spikes and Gibbs
overshoots are visible.

or more simply

1X

n=�1

einx

2⇡
=

1

2⇡
+

1

⇡

1X

n=1

cos(nx) =
1X

`=�1
�(x� 2⇡`). (3.120)

A similar argument starting from the stretched Fourier transform (3.45)
leads to the stretched Dirac comb

1X

n=�1

e2⇡in(x�y)/L

L
=

1X

`=�1
�(x� y � L`). (3.121)

Example 3.14 (Dirac’s Comb) The sum of the first 100,000 terms of this
cosine series (3.120) for the Dirac comb is plotted for the interval (�15, 15)
in Fig. 3.11. Gibbs overshoots appear at the discontinuities. The integral of
the first 100,000 terms from -15 to 15 is 5.0000.

Example 3.15 (Parseval’s Identity) Using our formula (3.42) for the
Fourier coe�cients of a stretched interval, we can relate a sum of prod-
ucts f⇤

n gn of the Fourier coe�cients of the functions f(x) and g(x) to an
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integral of the product f⇤(x) g(x)

1X

n=�1
f⇤
n gn =

1X

n=�1

Z L

0
dx

ei2⇡nx/Lp
L

f⇤(x)

Z L

0
dy

e�i2⇡ny/L

p
L

g(y). (3.122)

This sum contains Dirac’s comb (3.121) and so

1X

n=�1
f⇤
n gn =

Z L

0
dx

Z L

0
dy f⇤(x) g(y)

1

L

1X

n=�1
ei2⇡n(x�y)/L

=

Z L

0
dx

Z L

0
dy f⇤(x) g(y)

1X

`=�1
�(x� y � `L).

(3.123)

Only the ` = 0 tooth of the comb contributes, and we have more simply

1X

n=�1
f⇤
n gn =

Z L

0
dx

Z L

0
dy f⇤(x) g(y) �(x�y) =

Z L

0
dx f⇤(x) g(x). (3.124)

In particular, if the two functions are the same, then

1X

n=�1
|fn|2 =

Z L

0
dx |f(x)|2 (3.125)

which is Parseval’s identity. Thus if a function is square integrable on
an interval, then the sum of the squares of the absolute values of its Fourier
coe�cients is the integral of the square of its absolute value.

Example 3.16 (Derivatives of Delta Functions) Delta functions and other
generalized functions or distributions map smooth functions that vanish at
infinity into numbers in ways that are linear and continuous. Derivatives of
delta functions are defined so as to allow integrations by parts. Thus the
nth derivative of the delta function �(n)(x � y) maps the function f(x) to
(�1)nf (n)(y)
Z
�(n)(x�y) f(x) dx =

Z
�(x�y) (�1)n f (n)(x) dx = (�1)n f (n)(y) (3.126)

with no surface term.

Example 3.17 (The Equation xf(x) = a) Dirac’s delta function some-
times appears unexpectedly. For instance, the general solution to the equa-
tion x f(x) = a(x) is f(x) = a(x)/x + b(x) �(x) in which b(x) is a con-
stant (Dirac, 1967, sec. 15), (Waxman and Peck, 1998) or x b(x) = 0 at
x = 0. Similarly, the general solution to the equation x2 f(x) = a(x) is
f(x) = a(x)/x2 + b(x) �(x)/x+ c(x) �0(x) in which �0(x) is the derivative of
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the delta function, b(x) is continuous, c(x) has a continuous first derivative,
and x b(x) = x c(x) = x2 c0(x) = 0 at x = 0.

3.12 Harmonic oscillators

The hamiltonian for the harmonic oscillator is

H =
p2

2m
+

1

2
m!2q2. (3.127)

The commutation relation [q, p] ⌘ qp � pq = i~ implies that the lowering
and raising operators

a =

r
m!

2~

✓
q +

ip

m!

◆
and a† =

r
m!

2~

✓
q � ip

m!

◆
(3.128)

obey the commutation relation [a, a†] = 1. In terms of a and a†, which also
are called the annihilation and creation operators, the hamiltonian H is

H = ~!
⇣
a†a+ 1

2

⌘
. (3.129)

There is a unique state |0i that is annihilated by the operator a, as may
be seen by solving the di↵erential equation

hq0|a|0i =
r

m!

2~ hq0|
✓
q +

ip

m!

◆
|0i = 0. (3.130)

Since hq0|q = q0hq0| and

hq0|p|0i = ~
i

dhq0|0i
dq0

(3.131)

the resulting di↵erential equation is

dhq0|0i
dq0

= � m!

~ q0hq0|0i. (3.132)

Its suitably normalized solution is the wave function for the ground state of
the harmonic oscillator

hq0|0i =
⇣m!
⇡~

⌘1/4
exp

✓
�m!q02

2~

◆
. (3.133)

For n = 0, 1, 2, . . . , the nth eigenstate of the hamiltonian H is

|ni = 1p
n!

⇣
a†
⌘n

|0i (3.134)

where n! ⌘ n(n�1) . . . 1 is n-factorial and 0! = 1. The commutation relation
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[a, a†] = 1 implies that a|ni =
p
n|n� 1i, that a†|ni =

p
(n+ 1)|n+1i, and

that

H|ni = ~!
�
n+ 1

2

�
|ni. (3.135)

The identity operator is

I =
1X

n=0

|nihn|. (3.136)

An arbitrary state | i has an expansion in terms of the eigenstates |ni

| i = I| i =
1X

n=0

|nihn| i (3.137)

and evolves in time like a Fourier series

| , ti = e�iHt/~| i = e�iHt/~
1X

n=0

|nihn| i = e�i!t/2
1X

n=0

e�in!t|nihn| i

(3.138)
with wave function

 (q, t) = hq| , ti = e�i!t/2
1X

n=0

e�in!thq|nihn| i. (3.139)

The wave functions hq|ni of the energy eigenstates are related to the Hermite
polynomials (example 9.6)

Hn(x) = (�1)nex
2 dn

dxn
e�x2

(3.140)

by a change of variables x =
p
m!/~ q ⌘ sq and a normalization factor

hq|ni =
p
s e�(sq)2/2

p
2nn!

p
⇡

Hn(sq) =
⇣m!
⇡~

⌘1/4 e�m!q2/2~
p
2nn!

Hn

✓⇣m!
~

⌘1/2
q

◆
.

(3.141)

For every complex number ↵, the coherent state |↵i

|↵i = e�|↵|2/2e↵a
† |0i = e�|↵|2/2

1X

n=0

↵n

p
n!
|ni (3.142)

is an eigenstate a|↵i = ↵|↵i of the lowering (or annihilation) operator a
with eigenvalue ↵. Its time evolution is simply

|↵, ti = e�i!t/2e�|↵|2/2
1X

n=0

�
↵e�i!t

�n
p
n!

|ni = e�i!t/2 |↵e�i!ti. (3.143)
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3.13 Nonrelativistic strings

If we clamp the ends of a nonrelativistic string at x = 0 and x = L, then
the amplitude y(x, t) will obey the boundary conditions

y(0, t) = y(L, t) = 0 (3.144)

and the wave equation

v2
@2y

@x2
=
@2y

@t2
(3.145)

as long as y(x, t) remains small. The functions

yn(x, t) = sin
n⇡x

L

✓
an cos

n⇡vt

L
+ bn sin

n⇡vt

L

◆
(3.146)

satisfy this wave equation (3.145) and the boundary conditions (3.144). They
represent waves traveling along the x-axis with speed v.

The space SL of functions f(x) that satisfy the boundary condition (3.144)
is spanned by the functions sin(n⇡x/L). One may use the integral formula

Z L

0
sin

n⇡x

L
sin

m⇡x

L
dx =

L

2
�nm (3.147)

to derive for any function f 2 SL the Fourier series

f(x) =
1X

n=1

fn sin
n⇡x

L
(3.148)

with coe�cients

fn =
2

L

Z L

0
sin

n⇡x

L
f(x)dx (3.149)

and the representation

1X

m=�1
�(x� z � 2mL) =

2

L

1X

n=1

sin
n⇡x

L
sin

n⇡z

L
(3.150)

for the Dirac comb on SL.

3.14 Periodic boundary conditions

Periodic boundary conditions often are convenient. For instance, rather than
study an infinitely long one-dimensional system, we might study the same
system, but of length L. The ends cause e↵ects not present in the infinite
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system. To avoid them, we imagine that the system forms a circle and impose
the periodic boundary condition

 (x± L, t) =  (x, t). (3.151)

Analogous conditions in three dimensions are

 (x+ kL, y + `L, z +mL, t) =  (x, y, z, t) (3.152)

for all integers k, `, and m.
The eigenstates |pi of the free hamiltonian H = p

2/2m have wave func-
tions

 p(x) = hx|pi = eix·p/~/(2⇡~)3/2. (3.153)

The periodic boundary conditions (3.152) require that each component pi
of momentum satisfy Lpi/~ = 2⇡ni or

p =
2⇡~n
L

=
hn

L
(3.154)

where n is a vector of integers, which may be positive or negative or zero.
Periodic boundary conditions naturally arise in the study of solids. The

atoms of a perfect crystal are at the vertices of a Bravais lattice

xi = x0 +
3X

i=1

niai (3.155)

in which the three vectors ai are the primitive vectors of the lattice and
the ni are three integers. The hamiltonian of such an infinite crystal is
invariant under translations in space by

3X

i=1

niai. (3.156)

To keep the notation simple, let’s restrict ourselves to a cubic lattice with
lattice spacing a. Then since the momentum operator p generates transla-
tions in space, the invariance of H under translations by an

exp(ian · p)H exp(�ian · p) = H (3.157)

implies that eian·p and H are compatible normal operators [eian·p, H] = 0.
As explained in section 1.33, it follows that we may choose the eigenstates
of H also to be eigenstates of eian·p with eigenvalue eian·k

eiap·n/~| i = eiak·n | i (3.158)
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which implies that

 (x+ an) = hx+ an| i = hx|eiap·n/~| i = hx|eiak·n/~| i = eiak·n  (x).
(3.159)

Setting

 (x) = eik·x u(x) (3.160)

we see that condition (3.159) implies that u(x) is periodic

u(x+ an) = u(x). (3.161)

For a general Bravais lattice, this Born–von Karman periodic boundary
condition is

u

 
x+

3X

i=1

niai

!
= u(x). (3.162)

Equations (3.159) and (3.161) are known as Bloch’s theorem.

Exercises

3.1 Show that sin!1x+ sin!2x is the same as (3.15).
3.2 Show that the Fourier series (3.16) obeys Laplace’s equation (3.17) for

⇢ < a and respects the boundary condition f(a, ✓) = h(✓).
3.3 Find the forms that equations (3.9 & 3.10) for the inner products hg|fi

and hf |fi take when one uses the asymmetrical notations (3.20 & 3.21).
3.4 HW2021 Find the Fourier series for the function exp(ax) on the interval

�⇡ < x  ⇡.
3.5 HW2021 Find the Fourier series for the function (x2�⇡2)2 on the same

interval (�⇡,⇡].
3.6 HW2021 Find the Fourier series for the function (1 + cosx) sin ax on

the interval (�⇡,⇡].
3.7 Show that the Fourier series for the function x cosx on the interval

[� ⇡,⇡] is

x cosx = �1

2
sinx+ 2

1X

n=2

(�1)n n

n2 � 1
sinnx. (3.163)

3.8 (a) Show that the Fourier series for the function |x| on the interval
[� ⇡,⇡] is

|x| = ⇡

2
� 4

⇡

1X

n=0

cos(2n+ 1)x

(2n+ 1)2
. (3.164)

(b) Use this result to find a neat formula for ⇡2/8. Hint: set x = 0.
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3.9 Show that the Fourier series for the function | sinx| on the interval
[� ⇡,⇡] is

| sinx| = 2

⇡
� 4

⇡

1X

n=1

cos 2nx

4n2 � 1
. (3.165)

3.10 Show that the Fourier coe�cients of the C0 function (3.69) on the
interval [� ⇡,⇡] are given by (3.70).

3.11 Find by inspection the Fourier series for the function exp[exp(�ix)].

3.12 Fill in the steps in the computation (3.35) of the Fourier series for x2.

3.13 Do the first integral in equation (3.75). Hint: di↵erentiate ln
�
sin⇡x
⇡x

�
.

3.14 Use the infinite-product formula (3.76) for the sine and the relation
cos⇡x = sin 2⇡x/(2 sin⇡x) to derive the infinite-product formula (3.77)
for the cosine. Hint:

1Y

n=1

"
1� x2

1
4n

2

#
=

1Y

n=1

"
1� x2

1
4(2n� 1)2

#"
1� x2

1
4(2n)

2

#
. (3.166)

3.15 What’s the general solution to the equation x3f(x) = a(x)?

3.16 HW2021 Suppose we wish to approximate the real square-integrable
function f(x) by the Fourier series with N terms

fN (x) =
a0
2

+
NX

n=1

(an cosnx+ bn sinnx) . (3.167)

Then the error

EN =

Z 2⇡

0
[f(x)� fN (x)]2 dx (3.168)

will depend upon the 2N+1 coe�cients an and bn. The best coe�cients
minimize this error and satisfy the conditions

@EN

@an
=
@EN

@bn
= 0. (3.169)

By using these conditions, find the best coe�cients.

3.17 Find the Fourier series for the function f(x) = ✓(a2�x2) on the interval
[�⇡,⇡] for the case a2 < ⇡2. The Heaviside step function ✓(x) is
zero for x < 0, one-half for x = 0, and unity for x > 0 (Oliver Heaviside,
1850–1925). The value assigned to ✓(0) seldom matters, and you need
not worry about it in this problem.

3.18 Derive or infer the formula (3.121) for the stretched Dirac comb.



Exercises 141

3.19 Use the commutation relation [q, p] = i~ to show that the annihila-
tion and creation operators (3.128) satisfy the commutation relation
[a, a†] = 1.

3.20 Show that the state |ni = (a†)n|0i/
p
n! is an eigenstate of the hamil-

tonian (3.129) with energy ~!(n+ 1/2).

3.21 HW2021 Show that the coherent state |↵i (3.142) is an eigenstate of
the annihilation operator a with eigenvalue ↵.

3.22 Derive equations (3.149 & 3.150) from the expansion (3.148) and the
integral formula (3.147).

3.23 HW2021 Consider a string like the one described in section 3.13, which
satisfies the boundary conditions (3.144) and the wave equation (3.145).
The string is at rest y(x, 0) = 0 at time t = 0 and is struck precisely at
t = 0 and x = a so that its time derivative at t = 0 (denoted by a dot)
ẏ(x, 0) = Lv0�(x� a). Find y(x, t) and ẏ(x, t).

3.24 Same as exercise (3.23), but now the initial conditions are

u(x, 0) = f(x) and u̇(x, 0) = g(x) (3.170)

in which f(0) = f(L) = 0 and g(0) = g(L) = 0. Find the motion of the
amplitude u(x, t) of the string.

3.25 (a) Find the Fourier series for the function f(x) = x2 on the interval
[�⇡,⇡]. (b) Use your result at x = ⇡ to show that

1X

n=1

1

n2
=
⇡2

6
(3.171)

which is the value of Riemann’s zeta function (5.106) ⇣(x) at x = 2.
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Fourier and Laplace Transforms

The complex exponentials exp(i2⇡nx/L) are orthonormal and easy to dif-
ferentiate (and to integrate), but they are periodic with period L. If one
wants to represent functions that are not periodic, a better choice is the
complex exponentials exp(ikx), where k is an arbitrary real number. These
orthonormal functions are the basis of the Fourier transform. The choice of
complex k leads to the transforms of Laplace, Mellin, and Bromwich.

4.1 Fourier transforms

The interval [�L/2, L/2] is arbitrary in the Fourier series (3.41)

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

. (4.1)

What happens when we stretch this interval without limit, letting L ! 1?
We may use the nearest-integer function [p] to convert the coe�cients

fn into a function of a continuous variable f̂(p) ⌘ f[p] such that f̂(p) = fn
when |p � n| < 1/2. In terms of this function f̂(p), the Fourier series (4.1)
for the function f(x) is

f(x) =
1X

n=�1

Z n+1/2

n�1/2
f̂(p)

ei2⇡[p]x/Lp
L

dp =

Z 1

�1
f̂(p)

ei2⇡[p]x/Lp
L

dp. (4.2)

Since [p] and p di↵er by no more than 1/2, the absolute value of the
di↵erence between exp(i⇡[p]x/L) and exp(i⇡px/L) for fixed x is

���ei2⇡[p]x/L � ei2⇡px/L
��� =

���ei2⇡([p]�p)x/L � 1
��� ⇡

⇡|x|
L

(4.3)

which goes to zero as L ! 1. So in this limit, we may replace [p] by p and
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express f(x) as

f(x) =

Z 1

�1
f̂(p)

ei2⇡px/Lp
L

dp. (4.4)

We let p = Lk/(2⇡) so k = 2⇡p/L and find for f(x) the integral

f(x) =

Z 1

�1
f̂

✓
Lk

2⇡

◆
eikxp
L

L

2⇡
dk =

Z 1

�1

r
L

2⇡
f̂

✓
Lk

2⇡

◆
eikx

dkp
2⇡

. (4.5)

Now in terms of the Fourier transform f̃(k) defined as

f̃(k) =

r
L

2⇡
f̂

✓
Lk

2⇡

◆
, (4.6)

the integral (4.5) for f(x) is the inverse Fourier transform

f(x) =

Z 1

�1
f̃(k) eikx

dkp
2⇡

. (4.7)

To find f̃(k), we use its definition (4.6), the definition (3.42) of fn, our
formulas f̃(k) =

p
Lk/(2⇡)f̂(Lk/(2⇡)) and f̂(y) = f[y], and the inequality

|2⇡[Lk/2⇡]/L� k|  ⇡/2L to write

f̃(k) =

r
L

2⇡
f[Lk

2⇡ ]
=

r
L

2⇡

Z L/2

�L/2
f(x)

e�i2⇡[Lk
2⇡ ]

x
L

p
L

dx ⇡
Z L/2

�L/2
f(x)e�ikx dxp

2⇡
.

This formula becomes exact in the limit L ! 1

f̃(k) =

Z 1

�1
f(x) e�ikx dxp

2⇡
(4.8)

and so we have the Fourier transformations

f(x) =

Z 1

�1
f̃(k) eikx

dkp
2⇡

and f̃(k) =

Z 1

�1
f(x) e�ikx dxp

2⇡
. (4.9)

The function f̃(k) is the Fourier transform of f(x), and f(x) is the in-
verse Fourier transform of f̃(k).

In these symmetrical relations (4.9), the distinction between a Fourier
transform and an inverse Fourier transform is entirely a matter of conven-
tion. There is no rule for which sign, ikx or �ikx, goes with which transform
or for where to put the 2⇡’s. Thus one often sees

f(x) =

Z 1

�1
f̃(k) e±ikx dk and f̃(k) =

Z 1

�1
f(x) e⌥ikx dx

2⇡
(4.10)
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as well as

f(x) =

Z 1

�1
f̃(k) e±ikx dk

2⇡
and f̃(k) =

Z 1

�1
f(x) e⌥ikx dx. (4.11)

One sometimes needs to relate a function’s Fourier series to its Fourier
transform. So let’s compare the Fourier series (4.1) for the function f(x) on
the interval [�L/2, L/2] with its Fourier transform (4.9) in the limit of large
L setting kn = 2⇡n/L

f(x) =
1X

n=�1
fn

ei2⇡nx/Lp
L

=
1X

n=�1
fn

eiknxp
L

=

Z 1

�1
f̃(k) eikx

dkp
2⇡

. (4.12)

Since fn = f̂(p) = f[p], by using the definition (4.6) of f̃(k), we have

fn = f[n] = f[p] = f̂(p) = f̂

✓
Lk

2⇡

◆
=

r
2⇡

L
f̃(k). (4.13)

Thus, to get the Fourier series from the Fourier transform, we multiply the
series by 2⇡/L and use the Fourier transform at kn divided by

p
2⇡

f(x) =
1p
L

1X

n=�1
fn e

iknx =
2⇡

L

1X

n=�1

f̃(kn)p
2⇡

eiknx. (4.14)

Going the other way, we set f̃(k) =
p
L/2⇡ fn =

p
L/2⇡ f[Lk/2⇡] and find

f(x) =

Z 1

�1
f̃(k) eikx

dkp
2⇡

=
L

2⇡

Z 1

�1

f[Lk/2⇡]p
L

eikxdk. (4.15)

Example 4.1 (The Fourier transform of a gaussian is a gaussian) The
Fourier transform of the gaussian f(x) = exp(�m2 x2) is

f̃(k) =

Z 1

�1

dxp
2⇡

e�ikx e�m2 x2
. (4.16)

We complete the square in the exponent

f̃(k) = e�k2/4m2
Z 1

�1

dxp
2⇡

e�m2 (x+ik/2m2)2 . (4.17)

As we’ll see in Sec. 6.14 when we study analytic functions, we may replace
x by x� ik/2m2 without changing the value of this integral. So we can drop
the term ik/2m2 in the exponential and get

f̃(k) = e�k2/4m2
Z 1

�1

dxp
2⇡

e�m2 x2
=

1p
2m

e�k2/4m2
. (4.18)
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Thus the Fourier transform of a gaussian is another gaussian

f̃(k) =

Z 1

�1

dxp
2⇡

e�ikx e�m2 x2
=

1p
2m

e�k2/4m2
. (4.19)

But their exponents are very di↵erent. So if the gaussian f(x) = exp(�m2x2)
decreases slowly as x ! 1 because m is small (or quickly because m is big),
then its gaussian Fourier transform f̃(k) = exp(�k2/4m2)/m

p
2 decreases

quickly as k ! 1 because m is small (or slowly because m is big).
Can we invert f̃(k) to get f(x)? The inverse Fourier transform (4.7) says

f(x) =

Z 1

�1

dkp
2⇡

f̃(k) eikx =

Z 1

�1

dkp
2⇡

1

m
p
2
eikx�k2/4m2

. (4.20)

By again completing the square in the exponent

f(x) = e�m2x2
Z 1

�1

dkp
2⇡

1

m
p
2
e�(k�i2m2x)2/4m2

(4.21)

and shifting the variable of integration k to k + i2m2x, we find

f(x) = e�m2x2
Z 1

�1

dkp
2⇡

1

m
p
2
e�k2/(4m2) = e�m2x2

(4.22)

which is reassuring.
Using (4.18) for f̃(k) and the connections (4.12–4.15) between Fourier

series and transforms, we see that a Fourier series for this gaussian is in the
limit of L � x

f(x) = e�m2x2
=

2⇡

L

1X

n=�1

1p
4⇡m

e�k2n/(4m
2)eiknx (4.23)

in which kn = 2⇡n/L.

4.2 Fourier transforms of real functions

If a function f(x) is real, then just as is Fourier coe�cients satisfy f⇤
n = f�n

(3.13), so too the complex conjugate of its Fourier transform (4.8)

f̃(k) =

Z 1

�1

dxp
2⇡

f(x) e�ikx (4.24)

is its Fourier transform evaluated at �k

f̃⇤(k) =

Z 1

�1

dxp
2⇡

f(x) eikx = f̃(�k). (4.25)
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It follows (exercise 4.1) that a real function f(x) satisfies the relation

f(x) =
1

⇡

Z 1

0
dk

Z 1

�1
f(y) cos k(y � x) dy. (4.26)

If f(x) is both real and even, then (exercise 4.2)

f(x) =
2

⇡

Z 1

0
cos kx dk

Z 1

0
f(y) cos ky dy, (4.27)

while if it is real and odd, then

f(x) =
2

⇡

Z 1

0
sin kx dk

Z 1

0
f(y) sin ky dy. (4.28)

Example 4.2 (Dirichlet’s Discontinuous Factor) Using (4.27), one may
write the square wave

f(x) =

8
<

:

1 |x| < 1
1
2 |x| = 1
0 |x| > 1

(4.29)

as Dirichlet’s discontinuous factor

f(x) =
2

⇡

Z 1

0

sin k cos kx

k
dk (4.30)

(exercise 4.3).

Example 4.3 (Even and Odd Exponentials) By using the Fourier-transform
formulas (4.27 & 4.28), one may show that the Fourier transform of the even
exponential exp(��|x|) is

e��|x| =
2

⇡

Z 1

0

� cos kx

�2 + k2
dk (4.31)

while that of the odd exponential x exp(��|x|)/|x| is
x

|x|e
��|x| =

2

⇡

Z 1

0

k sin kx

�2 + k2
dk (4.32)

(exercise 4.4).

4.3 Dirac, Parseval, and Poisson

Combining the basic equations (4.9) that define the Fourier transform, we
may do something apparently useless: we may write the function f(x) in
terms of itself as

f(x) =

Z 1

�1

dkp
2⇡

f̃(k) eikx =

Z 1

�1

dkp
2⇡

eikx
Z 1

�1

dyp
2⇡

e�iky f(y). (4.33)
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Let’s compare this equation

f(x) =

Z 1

�1
dy

✓Z 1

�1

dk

2⇡
exp[ik(x� y)]

◆
f(y) (4.34)

with one (3.112) that describes Dirac’s delta function

f(x) =

Z 1

�1
dy �(x� y) f(y). (4.35)

Thus for functions with sensible Fourier transforms, the delta function is

�(x� y) =

Z 1

�1

dk

2⇡
exp[ik(x� y)]. (4.36)

The same integral from �N to N

�N (x� y) =

Z N

�N

dk

2⇡
exp[ik(x� y)] =

sin(N(x� y))

⇡(x� y)
(4.37)

is plotted in Fig. 4.1 for y = 0 and N = 106. The scales of the two axes
di↵er by more than 108.

Finite Fourier integral for Dirac’s delta function
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Figure 4.1 The integral (4.37) for N = 106 is plotted for |x|  0.001.
The scales of the axes di↵er by more than 108. Matlab scripts for this
chapter’s figures of are in Fourier and Laplace transforms at github.com/
kevinecahill.
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If we multiply Dirac’s delta function (4.36) by the function f(y) and in-
tegrate over y, then we get back the Fourier-transform relation (4.33)

f(x) =

Z
dy �(x� y) f(y) =

Z
dy

Z 1

�1

dk

2⇡
eik(x�y) f(y) =

Z
dkp
2⇡

eikx f̃(k).

(4.38)

The inner product (f, g) or hf |gi of two functions f(x) and g(x) is

hf |gi = (f, g) =

Z 1

�1
dx f⇤(x) g(x). (4.39)

In terms of the Fourier transforms (4.8) f̃(k) and g̃(k), this inner product is

(f, g) =

Z 1

�1
dx

Z 1

�1

dkp
2⇡

⇣
f̃(k) eikx

⌘⇤ Z 1

�1

dk0p
2⇡

g̃(k0) eik
0x

=

Z 1

�1
dk

Z 1

�1
dk0

Z 1

�1

dx

2⇡
eix(k

0�k) f̃⇤(k) g̃(k0) (4.40)

=

Z 1

�1
dk

Z 1

�1
dk0 �(k0 � k) f̃⇤(k) g̃(k0) =

Z 1

�1
dk f̃⇤(k) g̃(k).

Thus we arrive at Parseval’s relation

(f, g) =

Z 1

�1
dx f⇤(x) g(x) =

Z 1

�1
dk f̃⇤(k) g̃(k) = (f̃ , g̃) (4.41)

which says that the inner product of two functions is the same as the in-
ner product of their Fourier transforms The Fourier transform is a unitary
transform. In particular, if f = g, then

hf |fi = (f, f) =

Z 1

�1
dx |f(x)|2 =

Z 1

�1
dk |f̃(k)|2 (4.42)

(Marc-Antoine Parseval des Chênes, 1755–1836).
In fact, one may show that the Fourier transform maps the space of

(Lebesgue) square-integrable functions onto itself in a one-to-one manner.
Thus the natural space for the Fourier transform is the space of square-
integrable functions, and so the representation (4.36) of Dirac’s delta func-
tion is suitable for continuous square-integrable functions.
This may be a good place to say a few words about how to evaluate

integrals involving delta functions of more complicated arguments, such as

J =

Z
�
�
g(x)

�
f(x) dx. (4.43)

To see how this works, let’s assume that g(x) vanishes at a single point x0
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at which its derivative g0(x0) 6= 0 isn’t zero. Then the integral J involves f
only at f(x0) which we can bring outside as a prefactor

J = f(x0)

Z
�
�
g(x)

�
dx. (4.44)

Near x0 the function g(x) is approximately g0(x0)(x�x0), and so the integral
is

J = f(x0)

Z
�
�
g0(x0)(x� x0)

�
dx. (4.45)

Since the delta function is nonnegative, we can write

J =
f(x0)

|g0(x0)|

Z
�
�
g0(x0)(x� x0)

�
|g0(x0)| dx

=
f(x0)

|g0(x0)|

Z
�(g � g0) dg =

f(x0)

|g0(x0)|
. (4.46)

Thus for a function g(x) that has a single zero at x = x0, we have
Z
�
�
g(x)

�
f(x) dx =

f(x0)

|g0(x0)|
or �

�
g(x)

�
=
�(x� x0)

|g0(x0)|
. (4.47)

If g(x) has several zeros x0k, then we must sum over them
Z
�
�
g(x)

�
f(x) dx =

X

k

f(x0k)

|g0(x0k)|
or �

�
g(x)

�
=
X

k

�(x� x0k)

|g0(x0k)|
. (4.48)

Example 4.4 (Delta function of a function whose derivative vanishes) The
integral (4.43) for J is ill defined when g(x0) = g0(x0) = 0 unless f(x0) = 0
in which case, with y = (x� x0)2/2, it is by (4.47)

J =

Z
�
�
g(x)

�
f(x) dx =

Z
�
⇣
1
2(x� x0)

2 g00(x0)
⌘
(x� x0) f

0(x0) dx

=

Z
�
�
y g00(x0)

�
f 0(x0) dy =

f 0(x0)

|g00(x0)|
. (4.49)

So if x0 is the only root of g(x) and g(x0) = g0(x0) = 0, then

�
�
g(x)

�
= � �0(x� x0)

|g00(x0)|
(4.50)

works in an integral like (4.43 or 4.49) if f 2 C1 and f(x0) = 0.

Our Dirac-comb formula (3.120) with y = 0 is

1X

n=�1

e�inx

2⇡
=

1X

`=�1
�(x� 2⇡`). (4.51)
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Multiplying both sides of this comb by a function f(x) and integrating over
the real line, we have

1X

n=�1

Z 1

�1

e�inx

2⇡
f(x) dx =

1X

`=�1

Z 1

�1
�(x� 2⇡`) f(x) dx. (4.52)

Our formula (4.9) for the Fourier transform f̃(n) of a function f(x) now
gives us the Poisson summation formula relating a sum of a function
f(2⇡`) to a sum of its Fourier transform f̃(n)

1p
2⇡

1X

n=�1
f̃(n) =

1X

`=�1
f(2⇡`) (4.53)

in which n and ` are summed over all the integers. The stretched version of
the Poisson summation formula is

p
2⇡

L

1X

n=�1
f̃ (2⇡n/L) =

1X

`=�1
f(`L). (4.54)

Both sides of these formulas make sense for continuous functions that are
square integrable on the real line.

Example 4.5 (Poisson Summation Formula) In example 4.1, we saw that
the gaussian f(x) = exp(�m2x2) has f̃(k) = exp(�k2/4m2)/

p
2m as its

Fourier transform. So in this case, the Poisson summation formula (4.53)
gives

1

2
p
⇡m

1X

k=�1
e�k2/4m2

=
1X

`=�1
e�(2⇡`m)2 . (4.55)

For m � 1, the left-hand sum converges slowly, while the right-hand sum
converges quickly. For m ⌧ 1, the right-hand sum converges slowly, while
the left-hand sum converges quickly.

A sum that converges slowly in space often converges quickly in momen-
tum space. Ewald summation is a technique for summing electrostatic
energies, which fall o↵ only with a power of the distance, by summing their
Fourier transforms (Darden et al., 1993).

4.4 Derivatives and integrals of Fourier transforms

By di↵erentiating the inverse Fourier-transform relation (4.7)

f(x) =

Z 1

�1

dkp
2⇡

f̃(k) eikx (4.56)



4.4 Derivatives and integrals of Fourier transforms 151

we see that the Fourier transform of the derivative f 0(x) is ikf̃(k)

f 0(x) =

Z 1

�1

dkp
2⇡

ik f̃(k) eikx. (4.57)

Di↵erentiation with respect to x corresponds to multiplication by ik.
We may repeat the process and express the second derivative as

f
00
(x) =

Z 1

�1

dkp
2⇡

(�k2) f̃(k) eikx (4.58)

and the nth derivative as

f (n)(x) =

Z 1

�1

dkp
2⇡

(ik)n f̃(k) eikx. (4.59)

The indefinite integral of the inverse Fourier transform (4.56) is

8f(x) ⌘
Z x

dx1 f(x1) =

Z 1

�1

dkp
2⇡

f̃(k)
eikx

ik
(4.60)

and the nth indefinite integral is

(n)f(x) ⌘
Z x

dx1 . . .

Z xn�1

dxn f(xn) =

Z 1

�1

dkp
2⇡

f̃(k)
eikx

(ik)n
. (4.61)

Whether these derivatives and integrals converge better or worse than
f(x) depends upon the behavior of f̃(k) near k = 0 and as |k| ! 1.

Example 4.6 (Momentum and Momentum Space) Let’s write the inverse
Fourier transform (4.7) with  instead of f and with the wave number k
replaced by k = p/~

 (x) =

Z 1

�1
 ̃(k) eikx

dkp
2⇡

=

Z 1

�1

 ̃(p/~)p
~

eipx/~
dpp
2⇡~

. (4.62)

For a normalized wave function  (x), Parseval’s relation (4.42) implies

1 =

Z 1

�1
| (x)|2 dx =

Z 1

�1
| ̃(k)|2 dk =

Z 1

�1

�����
 ̃(p/~)p

~

�����

2

dp. (4.63)

or with  (x) = hx| i and '(p) = hp| i =  ̃(p/~)/
p
~

1 = h | i =
Z 1

�1
| (x)|2 dx =

Z 1

�1
h |xihx| i dx

=

Z 1

�1
h |pihp| i dp =

Z 1

�1
|'(p)|2 dp. (4.64)
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The inner product of any two states | i and |�i is

h |�i =
Z 1

�1
 ⇤(x)�(x) dx =

Z 1

�1
h |xihx|�i dx

=

Z 1

�1
 ⇤(p)�(p) dp =

Z 1

�1
h |pihp|�i dp (4.65)

so the outer products |xihx| and |pihp| can represent the identity operator

I =

Z 1

�1
dx |xihx| =

Z 1

�1
dp |pihp|. (4.66)

The Fourier transform (4.62) relating the wave function in momentum
space to that in position space is

 (x) =

Z 1

�1
eipx/~ '(p)

dpp
2⇡~

(4.67)

and the inverse Fourier transform is

'(p) =

Z 1

�1
e�ipx/~  (x)

dxp
2⇡~

. (4.68)

In Dirac notation, the first equation (4.67) of this pair is

 (x) = hx| i =
Z 1

�1
hx|pihp| i dp =

Z 1

�1

eipx/~p
2⇡~

'(p) dp (4.69)

so we identify hx|pi with

hx|pi = eipx/~p
2⇡~

(4.70)

which in turn is consistent with the delta-function relation (4.36)

�(x� y) = hx|yi =
Z 1

�1
hx|pihp|yi dp =

Z 1

�1

eipx/~p
2⇡~

e�ipy/~
p
2⇡~

dp

=

Z 1

�1

eip(x�y)/~

2⇡~ dp =

Z 1

�1
eik(x�y) dk

2⇡
. (4.71)

If we di↵erentiate  (x) as given by (4.69), then we find as in (4.57)

~
i

d

dx
 (x) =

Z 1

�1
p'(p) eipx/~

dpp
2⇡~

(4.72)

or

~
i

d

dx
 (x) = hx|p| i =

Z 1

�1
hx|p|p0i hp0| i dp0 =

Z 1

�1
p0 '(p0) eip

0x/~ dp0p
2⇡~

in Dirac notation.
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Example 4.7 (Uncertainty principle) Let’s first normalize the gaussian
 (x) = N exp(�(x/a)2) to unity over the real axis

1 = N2
Z 1

�1
e�2(x/a)2 dx =

r
⇡

2
aN2 (4.73)

which gives N2 =
p
2/⇡/a. So the normalized wave function is

 (x) ⌘ hx| i =
✓
2

⇡

◆1/4 1p
a
e�(x/a)2 . (4.74)

The mean value hAi of an operator A in a state | i is

hAi ⌘ h |A| i. (4.75)

More generally, the mean value of an operator A for a system described by
a density operator ⇢ is the trace

hAi ⌘ Tr (⇢A) . (4.76)

Since the gaussian (4.74) is an even function of x ( that is,  (�x) =  (x)),
the mean value of the position operator x in the state (4.74) vanishes

hxi = h |x| i =
Z 1

�1
x | (x)|2 dx = 0. (4.77)

The variance of an operator A with mean value hAi in a state | i is the
mean value of the square of the di↵erence A� hAi

(�A)2 ⌘ h | (A� hAi)2 | i. (4.78)

For a system with density operator ⇢, the variance of A is

(�A)2 ⌘ Tr
h
⇢ (A� hAi)2

i
. (4.79)

Since hxi = 0, the variance of the position operator x is

(�x)2 = h |(x� hxi)2| i = h |x2| i

=

Z 1

�1
x2 | (x)|2 dx =

a2

4
. (4.80)

We can use the Fourier transform to find the variance of the momentum
operator. By (4.68), the wave function '(p) in momentum space is

'(p) = hp| i =
Z 1

�1
hp|xihx| i dx. (4.81)
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By (4.70), the inner product hp|xi = hx|pi⇤ is hp|xi = e�ipx/~/
p
2⇡~, so

'(p) = hp| i =
Z 1

�1

dxp
2⇡~

e�ipx/~hx| i. (4.82)

Thus by (4.73 & 4.74), '(p) is the Fourier transform

'(p) =

Z 1

�1

dxp
2⇡~

e�ipx/~
✓
2

⇡

◆1/4 1p
a
e�(x/a)2 . (4.83)

Using our formula (4.19) for the Fourier transform of a gaussian, we get

'(p) =

r
a

2~

✓
2

⇡

◆1/4

e�(ap)2/(2~)2 . (4.84)

Since the gaussian '(p) is an even function of p, the mean value hpi of
the momentum operator vanishes, like that of the position operator. So the
variance of the momentum operator is

(�p)2 = h |(p� hpi)2| i = h |p2 | i =
Z 1

�1
p2 |'(p)|2 dp

=

r
2

⇡

Z 1

�1
p2

a

2~ e�(ap)2/2~2 dp =
~2
a2

. (4.85)

Thus in this case, the product of the two variances is

(�x)2 (�p)2 =
a2

4

~2
a2

=
~2
4

(4.86)

which is the minimum value that the product of the variances can assume
according to Heisenberg’s uncertainty principle

�x�p � ~
2

(4.87)

which follows from the Fourier-transform relations between the conjugate
variables x and p.
The state | i of a free particle at time t = 0

| , 0i =
Z 1

�1
|pihp| i dp =

Z 1

�1
|pi'(p) dp (4.88)

evolves under the influence of the hamiltonian H = p2/(2m) to the state

e�iHt/~| , 0i =
Z 1

�1
e�iHt/~|pi'(p) dp =

Z 1

�1
e�ip2t/(2~m)|pi'(p) dp (4.89)

at time t.
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Example 4.8 (Characteristic function) If P (x) is a probability distri-
bution normalized to unity over the range of x

Z
P (x) dx = 1 (4.90)

then its Fourier transform is the characteristic function

�(k) = P̃ (k) =

Z
eikxP (x) dx. (4.91)

The expected value of a function f(x) is the integral

E[f(x)] =

Z
f(x)P (x) dx. (4.92)

So the characteristic function �(k) = E[exp(ikx)] is the expected value
of the exponential exp(ikx), and its derivatives at k = 0 are the moments
E[xn] ⌘ µn of the probability distribution

E[xn] =

Z
xn P (x) dx = (�i)n

dn�(k)

dkn

����
k=0

. (4.93)

We’ll pick up this thread again in section 15.16.

4.5 Fourier transforms of functions of several variables

If f(x1, x2) is a function of two variables, then its double Fourier transform
f̃(k1, k2) is

f̃(k1, k2) =

Z 1

�1

dx1p
2⇡

Z 1

�1

dx2p
2⇡

e�ik1x1�ik2x2 f(x1, x2). (4.94)

By twice using the Fourier representation (4.36) of Dirac’s delta function,
we may invert this double Fourier transformation

Z 1

�1

Z 1

�1

dk1dk2
2⇡

ei(k1x1+k2x2) f̃(k1, k2)

=

Z 1

�1

Z 1

�1

dk1dk2
2⇡

Z 1

�1

Z 1

�1

dx01dx
0
2

2⇡
eik1(x1�x0

1)+ik2(x2�x0
2) f(x01, x

0
2)

=

Z 1

�1

dk2
2⇡

Z 1

�1

Z 1

�1
dx01dx

0
2 e

ik2(x2�x0
2) �(x1 � x01) f(x

0
1, x

0
2)

=

Z 1

�1

Z 1

�1
dx01dx

0
2 �(x1 � x01)�(x2 � x02) f(x

0
1, x

0
2) = f(x1, x2). (4.95)
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That is

f(x1, x2) =

Z 1

�1

Z 1

�1

dk1dk2
2⇡

ei(k1x1+k2x2) f̃(k1, k2). (4.96)

The Fourier transform of a function f(x1, . . . , xn) of n variables is

f̃(k1, . . . , kn) =

Z 1

�1
. . .

Z 1

�1

dx1 . . . dxn
(2⇡)n/2

e�i(k1x1+...+knxn) f(x1, . . . , xn)

(4.97)
and its inverse is

f(x1, . . . , xn) =

Z 1

�1
. . .

Z 1

�1

dk1 . . . dkn
(2⇡)n/2

ei(k1x1+...+knxn) f̃(k1, . . . , kn)

(4.98)
in which all the integrals run from �1 to 1.
If we generalize the relations (4.12–4.15) between Fourier series and trans-

forms from one to n dimensions, then we find that the Fourier series corre-
sponding to the Fourier transform (4.98) is

f(x1, . . . , xn) =

✓
2⇡

L

◆n 1X

j1=�1
. . .

1X

jn=�1
ei(kj1x1+...+kjnxn) f̃(kj1 , . . . , kjn)

(2⇡)n/2

(4.99)
in which kj` = 2⇡j`/L. Thus, for n = 3 we have

f(x) =
(2⇡)3

V

1X

j1=�1

1X

j2=�1

1X

j3=�1
eikj ·x f̃(kj)

(2⇡)3/2
(4.100)

in which kj = (kj1 , kj2 , kj3) and V = L3 is the volume of the box.

Example 4.9 (Helmholtz decomposition) Using the Levi-Civita formula
(2.73) that expresses every 3-vector V (x) in terms of any nonzero 3-vector
k, we can write the Fourier transform V (k) of any square-integrable 3-vector
field V (x) as

V (x) =

Z
V (k) eik·x d3x =

Z ⇣
k(k · V (k))

k
2 � k ⇥ (k ⇥ V (k))

k
2

⌘
eik·x d3x

= r
Z �ik · V (k)

k
2 eik·x d3x+r⇥

Z
ik ⇥ V (k)

k
2 eik·x d3x (4.101)

which is the sum of the gradient of a scalar field plus the curl of a vector
field.

Example 4.10 (Feynman propagator) For a spinless quantum field of
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mass m, Feynman’s propagator is the four-dimensional Fourier transform

4F (x) =

Z
exp(ik · x)
k2 +m2 � i✏

d4k

(2⇡)4
(4.102)

where k · x = k · x � k0x0, all physical quantities are in natural units
(c = ~ = 1), and x0 = ct = t. The tiny imaginary term �i✏ makes 4F (x�y)
proportional to the mean value in the vacuum state |0i of the time-ordered
product of the fields �(x) and �(y) (section 6.46)

�i4F (x� y) = h0|T [�(x)�(y)] |0i (4.103)

⌘ ✓(x0 � y0)h0|�(x)�(y)|0i+ ✓(y0 � x0)h0|�(y)�(x)|0i

in which ✓(a) = (a+ |a|)/2|a| is the Heaviside function.

4.6 Convolutions

The convolution of f(x) with g(x) is the integral

f ⇤ g(x) =
Z 1

�1

dyp
2⇡

f(x� y) g(y). (4.104)

The convolution product is symmetric

f ⇤ g(x) = g ⇤ f(x) (4.105)

because setting z = x� y, we have

f ⇤ g(x) =
Z 1

�1

dyp
2⇡

f(x� y) g(y) = �
Z �1

1

dzp
2⇡

f(z) g(x� z)

=

Z 1

�1

dzp
2⇡

g(x� z) f(z) = g ⇤ f(x).
(4.106)

Convolutions often occur in physics in the three-dimensional form

F (x) =

Z
G(x� x

0)S(x0) d3x0 (4.107)

in which G is a Green’s function and S is a source.

Example 4.11 (Gauss’s law and the potential for static electric fields) The
divergence of the electric field E is the microscopic charge density ⇢ divided
by the electric permittivity of the vacuum ✏0 = 8.854⇥ 10�12 F/m, that is,
r · E = ⇢/✏0. This constraint is known as Gauss’s law. If the charges and
fields are independent of time, then the electric field E is the gradient of a
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scalar potential E = � r�. These last two equations imply that � obeys
Poisson’s equation

�r2� =
⇢

✏0
. (4.108)

We may solve this equation by using Fourier transforms as described in
Section 4.14. If �̃(k) and ⇢̃(k) respectively are the Fourier transforms of
�(x) and ⇢(x), then Poisson’s di↵erential equation (4.108) gives

�r2�(x) = �r2
Z
eik·x �̃(k) d3k =

Z
k
2 eik·x �̃(k) d3k

=
⇢(x)

✏0
=

Z
eik·x

⇢̃(k)

✏0
d3k (4.109)

which implies the algebraic equation �̃(k) = ⇢̃(k)/✏0k
2 which gives �̃(k) as

a product of the Fourier transforms ⇢̃(k) and 1/k2 (and is an instance of
(4.175)). The inverse Fourier transform of �̃(k) is the scalar potential

�(x) =

Z
eik·x �̃(k) d3k =

Z
eik·x

⇢̃(k)

✏0 k
2 d

3
k (4.110)

=

Z
eik·x

1

k
2

Z
e�ik·x0 ⇢(x0)

✏0

d3x0d3k

(2⇡)3
=

Z
G(x � x

0)
⇢(x0)

✏0
d3x0

in which

G(x � x
0) =

Z
d3k

(2⇡)3
1

k
2 e

ik·(x�x0). (4.111)

G(x � x
0) is the Green’s function for the di↵erential operator �r2 in the

sense that

�r2G(x � x
0) =

Z
d3k

(2⇡)3
eik·(x�x0) = �(3)(x � x

0). (4.112)

We may think of G as the inverse of the operator �r2. The Green’s function
G(x � x

0) ensures that �(x) as given by (4.110) satisfies Poisson’s equation
(4.108). To integrate (4.111) and compute G(x � x

0), we use spherical co-
ordinates with the z-axis parallel to the vector x � x

0

G(x � x
0) =

Z
d3k

(2⇡)3
1

k
2 e

ik·(x�x0) =

Z 1

0

dk

(2⇡)2

Z 1

�1
d cos ✓ eik|x�x0| cos ✓

=

Z 1

0

dk

(2⇡)2
eik|x�x0| � e�ik|x�x0|

ik|x � x0| (4.113)

=
1

2⇡2|x � x
0|

Z 1

0

sin k|x � x
0| dk

k
=

1

2⇡2|x � x
0|

Z 1

0

sin k dk

k
.
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In example 6.47 of section 6.46 on Cauchy’s principal value, we’ll show that

Z 1

0

sin k

k
dk =

⇡

2
. (4.114)

Using this result, we have
Z

d3k

(2⇡)3
1

k
2 e

ik·(x�x0) = G(x � x
0) =

1

4⇡|x � x0| . (4.115)

Finally by substituting this formula for G(x � x
0) into Eq. (4.110), we find

that the Fourier transform �(x) of the product ⇢̃(k)/k2 of the functions ⇢̃(k)
and 1/k2 is the convolution

�(x) =
1

4⇡✏0

Z
⇢(x0)

|x � x
0| d

3
x
0 (4.116)

of their Fourier transforms 1/|x � x
0| and ⇢(x0). The Fourier transform of

the product of any two functions is the convolution of their Fourier trans-
forms, as we’ll see in the next section. (George Green 1793–1841)

Example 4.12 (Static magnetic vector potential) By Gauss’s law for mag-
netism (2.30) the magnetic induction B has zero divergence and so by the
Helmholtz decomposition (2.8) may be written as the curl B = r ⇥ A of
a vector potential A. For static currents, Ampère’s law is r ⇥ B = µ0J

in which µ0 = 1/(✏0c2) = 4⇡ ⇥ 10�7 N A�2 is the permeability of the vac-
uum. It then follows from the curl identity (2.51) that in Coulomb’s gauge
r ·A = 0, the magnetostatic vector potential A satisfies the equation

r⇥B = r⇥ (r⇥A) = r (r ·A)�r2
A = �r2

A = µ0J . (4.117)

Applying the Fourier-transform technique (4.108–4.116), we find that the
Fourier transforms of A and J satisfy the algebraic equation

Ã(k) = µ0
J̃(k)

k
2 (4.118)

which is an instance of (4.175). Performing the inverse Fourier transform,
we see that A is the convolution

A(x) =
µ0

4⇡

Z
d3x0 J(x0)

|x� x0| . (4.119)

If in the solution (4.116) of Poisson’s equation, ⇢(x) is translated by a,
then so is �(x). That is, if ⇢0(x) = ⇢(x+a) then �0(x) = �(x+a). Similarly, if
the current J(x) in (4.119) is translated by a, then so is the potential A(x).
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Convolutions respect translational invariance. That’s one reason why
they occur so often in the formulas of physics.

4.7 Fourier transform of a convolution

The Fourier transform of the convolution f ⇤ g is the product of the Fourier
transforms f̃ and g̃:

]f ⇤ g(k) = f̃(k) g̃(k). (4.120)

To see why, we form the Fourier transform ]f ⇤ g(k) of the convolution f⇤g(x)

]f ⇤ g(k) =
Z 1

�1

dxp
2⇡

e�ikx f ⇤ g(x)

=

Z 1

�1

dxp
2⇡

e�ikx
Z 1

�1

dyp
2⇡

f(x� y) g(y). (4.121)

Now we write f(x � y) and g(y) in terms of their Fourier transforms f̃(p)
and g̃(q)

]f ⇤ g(k) =
Z 1

�1

dxp
2⇡

e�ikx
Z 1

�1

dyp
2⇡

Z 1

�1

dpp
2⇡

f̃(p) eip(x�y)
Z 1

�1

dqp
2⇡

g̃(q) eiqy

(4.122)
and use the representation (4.36) of Dirac’s delta function twice to get

]f ⇤ g(k) =
Z 1

�1

dy

2⇡

Z 1

�1
dp

Z 1

�1
dq �(p� k) f̃(p) g̃(q) ei(q�p)y

=

Z 1

�1
dp

Z 1

�1
dq �(p� k) �(q � p) f̃(p) g̃(q)

=

Z 1

�1
dp �(p� k) f̃(p) g̃(p) = f̃(k) g̃(k) (4.123)

which is (4.120). Examples 4.11 and 4.12 illustrate this result.

4.8 Fourier transforms and Green’s functions

The Green’s function GP (x) of a di↵erential operator P is the inverse of P
in the sense that P GP (x) = �(x). If the di↵erential operator is a polynomial
P (@) ⌘ P (@1, . . . , @n) in the derivatives @1, . . . , @n with constant coe�cients,
then a suitable Green’s function GP (x) ⌘ GP (x1, . . . , xn) will satisfy

P (@)GP (x) = �(n)(x). (4.124)
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Expressing both GP (x) and �(n)(x) as Fourier transforms, we get

P (@)GP (x) = P (@)

Z
dnk eik·x G̃P (k) =

Z
dnk P (ik) eik·x G̃P (k)

= �(n)(x) =

Z
dnk

(2⇡)n
eik·x

(4.125)

which gives us the algebraic equation

G̃P (k) =
1

(2⇡)n P (ik)
. (4.126)

Thus the Green’s function GP for the di↵erential operator P (@) is

GP (x) =

Z
dnk

(2⇡)n
eik·x

P (ik)
. (4.127)

Example 4.13 (Green and Yukawa) In 1935, Hideki Yukawa (1907–1981)
proposed the partial di↵erential equation

PY (@)GY (x) ⌘ (�4+m2)GY (x) = (�r2 +m2)GY (x) = �(x). (4.128)

Our (4.127) gives as the Green’s function for PY (@) the Yukawa potential

GY (x) =

Z
d3k

(2⇡)3
eik·x

PY (ik)
=

Z
d3k

(2⇡)3
eik·x

k
2 +m2

=
e�mr

4⇡r
(4.129)

an integration done in example 6.28.

4.9 Laplace transforms

The Laplace transform f(s) of a function F (t) is the integral

f(s) =

Z 1

0
dt e�st F (t). (4.130)

Because the integration is over positive values of t, the exponential exp(�st)
falls o↵ rapidly for Res > 0. As Re s increases, the Laplace transform f(s)
becomes smoother and smaller. For Re s > 0, the exponential exp(�st) lets
many functions F (t) that are not integrable over the half line [0,1) have
well-behaved Laplace transforms.
For instance, the function F (t) = 1 is not integrable over the half line

[0,1), but its Laplace transform

f(s) =

Z 1

0
dt e�st F (t) =

Z 1

0
dt e�st =

1

s
(4.131)
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is well defined for Re s > 0 and square integrable for Re s > ✏.
The function F (t) = exp(kt) diverges exponentially for Re k > 0, but its

Laplace transform

f(s) =

Z 1

0
dt e�st F (t) =

Z 1

0
dt e�(s�k)t =

1

s� k
(4.132)

is well defined for Re s > k with a simple pole at s = k (section 6.10) and is
square integrable for Re s > k + ✏.
The Laplace transforms of cosh kt and sinh kt are

f(s) =

Z 1

0
dt e�st cosh kt =

1

2

Z 1

0
dt e�st

⇣
ekt + e�kt

⌘
=

s

s2 � k2
(4.133)

and

f(s) =

Z 1

0
dt e�st sinh kt =

1

2

Z 1

0
dt e�st

⇣
ekt � e�kt

⌘
=

k

s2 � k2
. (4.134)

The Laplace transform of cos!t is

f(s) =

Z 1

0
dt e�st cos!t =

1

2

Z 1

0
dt e�st

�
ei!t + e�i!t

�
=

s

s2 + !2
(4.135)

and that of sin!t is

f(s) =

Z 1

0
dt e�st sin!t =

1

2i

Z 1

0
dt e�st

�
ei!t � e�i!t

�
=

!

s2 + !2
.

(4.136)

Example 4.14 The Laplace transform of tz�1 is related to the gamma
function (5.58)

s�z �(z) =

Z 1

0
dt s�st tz�1. (4.137)

Example 4.15 (Lifetime of a Fluorophore) Fluorophores are molecules
that emit visible light when excited by photons. The probability P (t, t0)
that a fluorophore with a lifetime ⌧ will emit a photon at time t if excited
by a photon at time t0 is

P (t, t0) = ⌧�1 e�(t�t0)/⌧ ✓(t� t0) (4.138)

in which ✓(t� t0) = (t� t0 + |t� t0|)/2|t� t0| is the Heaviside function. One
way to measure the lifetime ⌧ of a fluorophore is to modulate the exciting
laser beam at a frequency ⌫ = 2⇡! of the order of 60 MHz and to detect
the phase-shift � in the light L(t) emitted by the fluorophore. That light is
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the integral of P (t, t0) times the modulated beam sin!t or equivalently the
convolution of e�t/⌧✓(t) with sin!t

L(t) =

Z 1

�1
P (t, t0) sin(!t0) dt0 =

Z 1

�1
⌧�1 e�(t�t0)/⌧✓(t� t0) sin(!t0) dt0

=

Z t

�1
⌧�1 e�(t�t0)/⌧ sin(!t0) dt0. (4.139)

Letting u = t� t0 and using the trigonometric formula

sin(a� b) = sin a cos b� cos a sin b (4.140)

we may relate this integral to the Laplace transforms of a sine (4.136) and
a cosine (4.135)

L(t) = � ⌧�1
Z 1

0
e�u/⌧ sin!(u� t) du

= � ⌧�1
Z 1

0
e�u/⌧ (sin!u cos!t� cos!u sin!t) du

=
sin(!t)� !⌧ cos(!t)

1 + (!⌧)2
. (4.141)

Setting cos� = 1/
p

1 + (!⌧)2 and sin� = !⌧/
p

1 + (!⌧)2, we have

L(t) =
1p

1 + (!⌧)2
(sin!t cos�� cos!t sin�) =

1p
1 + (!⌧)2

sin(!t� �).

(4.142)
The phase-shift � then is given by

� = arctan(!⌧)  ⇡

2
(4.143)

and the lifetime of the fluorophore in terms of the phase-shift �

⌧ = (1/!) tan� (4.144)

which is much easier to measure than the lifetime ⌧ .

4.10 Inversion of Laplace transforms

How do we invert the Laplace transform

f(s) =

Z 1

0
dt e�st F (t)? (4.145)

First we extend the Laplace transform from real s to s+ iu

f(s+ iu) =

Z 1

0
dt e�(s+iu)t F (t) (4.146)
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and choose s to be su�ciently positive that f(s+ iu) is suitably smooth and
bounded. Then we apply the delta-function formula (4.36) to the integral
Z 1

�1

du

2⇡
eiut f(s+ iu) =

Z 1

�1

du

2⇡

Z 1

0
dt0 eiut e�(s+iu)t0 F (t0)

=

Z 1

0
dt0 e�st0 F (t0)

Z 1

�1

du

2⇡
eiu(t�t0)

=

Z 1

0
dt0 e�st0 F (t0) �(t� t0) = e�st F (t).

(4.147)

So our inversion formula is

F (t) = est
Z 1

�1

du

2⇡
eiut f(s+ iu) (4.148)

for su�ciently large s. Some call this inversion formula a Bromwich integral,
others a Fourier-Mellin integral.

Example 4.16 (Inverting a Laplace transform) To find the inverse Laplace
transform of f(s) = 1/(s� k), we use the inversion formula (4.148)

F (t) = est
Z 1

�1

du

2⇡
eiut f(s+ iu) =

est

2⇡

Z 1

�1
du

eiut

s+ iu� k
= ekt. (4.149)

We’ll learn how to do such integrals in Section 6.14.

4.11 Volterra’s Convolution

Volterra introduced a convolution

F ?G(x) =

Z x

0
F (y)G(x� y) dy (4.150)

that is well suited to the Laplace transform.

Example 4.17 (Laplace transform of Volterra’s Convolution) The Laplace
transform of Volterra’s convolution (4.150) of F and G is.

Z 1

0
e�sxF ?G(x) dx =

Z 1

0
dx

Z x

0
dy e�sxF (y)G(x� y)

=

Z 1

0
dy

Z 1

y
dx e�sxF (y)G(x� y)

=

Z 1

0
dy

Z 1

0
dz e�s(y+z)F (y)G(z) = f(s)g(s)

(4.151)

the product fg of the Laplace transforms of F and G.
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4.12 Derivatives and integrals of Laplace transforms

The derivatives of a Laplace transform f(s) are by its definition (4.130)

dnf(s)

dsn
=

Z 1

0
dt (�t)n e�st F (t). (4.152)

They usually are well defined if f(s) is well defined. For instance, if we
di↵erentiate the Laplace transform (4.131) of the function F (t) = 1 which
is f(s) = 1/s, then we get

(�1)n
dns�1

dsn
=

n!

sn+1
=

Z 1

0
dt e�st tn (4.153)

which tells us that the Laplace transform of tn is n!/sn+1.
The result of di↵erentiating the function F (t) also has a simple form.

Integrating by parts, we find for the Laplace transform of F 0(t)
Z 1

0
dt e�st F 0(t) =

Z 1

0
dt

⇢
d

dt

⇥
e�st F (t)

⇤
� F (t)

d

dt
e�st

�

= � F (0) +

Z 1

0
dt F (t) s e�st

= � F (0) + s f(s) (4.154)

as long as e�stF (t) ! 0 as t ! 1.
The indefinite integral of the Laplace transform (4.130) is

8f(s) ⌘
Z
ds1 f(s1) =

Z 1

0
dt

e�st

(�t)
F (t) (4.155)

and its nth indefinite integral is

(n)f(s) ⌘
Z

dsn . . .

Z
ds1 f(s1) =

Z 1

0
dt

e�st

(�t)n
F (t). (4.156)

If f(s) is a well-behaved function, then these indefinite integrals usually are
well defined for s > 0 as long as F (t) ! 0 suitably as t ! 0.

4.13 Laplace transforms and di↵erential equations

Suppose we wish to solve the di↵erential equation

P (d/ds) f(s) = j(s). (4.157)

By writing f(s) and j(s) as Laplace transforms

f(s) =

Z 1

0
e�st F (t) dt and j(s) =

Z 1

0
e�st J(t) dt. (4.158)
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and using the formula (4.152) for the nth derivative of a Laplace transform,
we see that the di↵erential equation (4.157) amounts to

P (d/ds) f(s) =

Z 1

0
e�st P (�t)F (t) dt =

Z 1

0
e�st J(t) dt. (4.159)

which is equivalent to the algebraic equation

F (t) =
J(t)

P (�t)
. (4.160)

A particular solution to the inhomogeneous di↵erential equation (4.157) is
then the Laplace transform of this ratio

f(s) =

Z 1

0
e�st J(t)

P (�t)
dt. (4.161)

A fairly general solution of the associated homogeneous equation

P (d/ds) f(s) = 0 (4.162)

is the Laplace transform

f(s) =

Z 1

0
e�st �(P (�t))H(t) dt (4.163)

because

P (d/ds) f(s) =

Z 1

0
e�st P (�t) �(P (�t))H(t) dt = 0 (4.164)

as long as the function H(t) is suitably smooth. Thus our solution of the
inhomogeneous equation (4.157) is the sum of the two

f(s) =

Z 1

0
e�st J(t)

P (�t)
dt+

Z 1

0
e�st �(P (�t))H(t) dt. (4.165)

One may generalize this method to di↵erential equations in n variables. But
to carry out this procedure, one must be able to find the inverse Laplace
transform J(t) of the source function j(s).

Example 4.18 One solution to the di↵erential equation
✓

d2

ds2
� 1

◆
f(s) = j(s) =

Z 1

0
dt e�st J(t) (4.166)

in which P (d/ds) = d2/ds2 � 1 is

f(s) =

Z 1

0
dt e�st J(t)

t2 � 1
. (4.167)
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A more general solution is

f(s) =

Z 1

0
dt e�st J(t)

t2 � 1
+

Z 1

0
dt e�st�(t2 � 1)H(t)

=

Z 1

0
dt e�st J(t)

t2 � 1
+ ↵ e�s

(4.168)

in which ↵ is an arbitrary constant.

4.14 Applications to Di↵erential Equations

Let us consider a linear partial di↵erential equation in n variables

P (@1, . . . , @n)f(x1, . . . , xn) = g(x1, . . . , xn) (4.169)

in which P is a polynomial in the derivatives

@j ⌘
@

@xj
(4.170)

with constant coe�cients. If g = 0, the equation is homogeneous; otherwise it
is inhomogeneous. We expand the solution and source as integral transforms

f(x1, . . . , xn) =

Z
f̃(k1, . . . , kn) e

i(k1x1+...+knxn)dnk

g(x1, . . . , xn) =

Z
g̃(k1, . . . , kn) e

i(k1x1+...+knxn)dnk
(4.171)

in which the k integrals may run from �1 to 1 as in a Fourier transform
or up the imaginary axis from 0 to 1 as in a Laplace transform.
The correspondence (4.59) between di↵erentiation with respect to xj and

multiplication by ikj tells us that @mj acting on f gives

@mj f(x1, . . . , xn) =

Z
f̃(k1, . . . , kn) (ikj)

m ei(k1x1+...+knxn) dnk. (4.172)

If we abbreviate f(x1, . . . , xn) by f(x) and do the same for g, then we may
write our partial di↵erential equation (4.169) as

P (@1, . . . , @n)f(x) =

Z
f̃(k)P (ik1, . . . , ikn) e

i(k1x1+...+knxn) dnk

=

Z
g̃(k) ei(k1x1+...+knxn) dnk.

(4.173)
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Thus the inhomogeneous partial di↵erential equation

P (@1, . . . , @n)fi(x1, . . . , xn) = g(x1, . . . , xn) (4.174)

becomes an algebraic equation in k-space

P (ik1, . . . , ikn) f̃i(k1, . . . , kn) = g̃(k1, . . . , kn) (4.175)

where g̃(k1, . . . , kn) is the mixed Fourier-Laplace transform of g(x1, . . . , xn).
So one solution of the inhomogeneous di↵erential equation (4.169) is

fi(x1, . . . , xn) =

Z
ei(k1x1+...+knxn) g̃(k1, . . . , kn)

P (ik1, . . . , ikn)
dnk. (4.176)

The space of solutions to the homogeneous form of equation (4.169)

P (@1, . . . , @n)fh(x1, . . . , xn) = 0 (4.177)

is vast. We will focus on those that satisfy the algebraic equation

P (ik1, . . . , ikn)f̃h(k1, . . . , kn) = 0 (4.178)

and that we can write in terms of Dirac’s delta function as

f̃h(k1, . . . , kn) = �(P (ik1, . . . , ikn))h(k1, . . . , kn) (4.179)

in which the function h(k) is arbitrary. That is

fh(x) =

Z
ei(k1x1+...+knxn)�(P (ik1, . . . , ikn))h(k) d

nk. (4.180)

Our solution to the di↵erential equation (4.169) then is a sum of a particu-
lar solution (4.176) of the inhomogeneous equation (4.175) and our solution
(4.180) of the associated homogeneous equation (4.177)

f(x1, . . . , xn) =

Z
ei(k1x1+...+knxn)


g̃(k1, . . . , kn)

P (ik1, . . . , ikn)

+ �(P (ik1, . . . , ikn))h(k1, . . . , kn)

�
dnk

(4.181)

in which h(k1, . . . , kn) is an arbitrary function. The wave equation and the
di↵usion equation provide examples of this formula

f(x) =

Z
eik·x


g̃(k)

P (ik)
+ �(P (ik))h(k)

�
dnk. (4.182)
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Example 4.19 (Wave equation for a scalar field)
A free scalar field �(x) of massm in flat spacetime obeys the wave equation

�
r2 � @2t �m2

�
�(x) = 0 (4.183)

in natural units (~ = c = 1). We may use a four-dimensional Fourier trans-
form to represent the field �(x) as

�(x) =

Z
eik·x �̃(k)

d4k

(2⇡)2
(4.184)

in which k · x = k · x� k0t is the Lorentz-invariant inner product.
The homogeneous wave equation (4.183) then says

�
r2 � @2t �m2

�
�(x) =

Z �
�k

2 + (k0)2 �m2
�
eik·x �̃(k)

d4k

(2⇡)2
= 0 (4.185)

which implies the algebraic equation
�
�k

2 + (k0)2 �m2
�
�̃(k) = 0 (4.186)

an instance of (4.178). Our solution (4.180) is

�(x) =

Z
�
�
�k

2 + (k0)2 �m2
�
eik·x h(k)

d4k

(2⇡)2
(4.187)

in which h(k) is an arbitrary function. The argument of the delta function

P (ik) = (k0)2 � k
2 �m2 =

⇣
k0 �

p
k
2 +m2

⌘⇣
k0 +

p
k
2 +m2

⌘
(4.188)

has zeros at k0 = ±
p
k
2 +m2 ⌘ ±!k with

����
dP (±!k)

dk0

���� = 2!k. (4.189)

So using our formula (4.48) for integrals involving delta functions of func-
tions, we have

�(x) =

Z h
ei(k·x�!kt) h+(k) + ei(k·x+!kt) h�(k)

i d3k

(2⇡)22!k
(4.190)

where h±(k) ⌘ h(±!k,k). Since !k is an even function of k, we can write

�(x) =

Z h
ei(k·x�!kt) h+(k) + e�i(k·x�!kt) h�(�k)

i d3k

(2⇡)22!k
. (4.191)

If �(x) = �(x, t) is a real-valued classical field, then its Fourier transform
h(k) must obey the relation (4.25) which says that h�(�k) = h+(k)⇤. If �
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is a hermitian quantum field, then h�(�k) = h†+(k). In terms of the an-
nihilation operator a(k) ⌘ h+(k)/

p
4⇡!k and its adjoint a†(k), a creation

operator, the field �(x) is the integral

�(x) =

Z h
ei(k·x�!kt) a(k) + e�i(k·x�!kt) a†(k)

i d3kp
(2⇡)32!k

. (4.192)

The momentum ⇡ canonically conjugate to the field is its time derivative

⇡(x) = �i

Z h
ei(k·x�!kt) a(k)� e�i(k·x�!kt) a†(k)

ir !k

2(2⇡)3
d3k. (4.193)

If the operators a and a† obey the commutation relations

[a(k), a†(k0)] = �(k�k
0) and [a(k), a(k0)] = [a†(k), a†(k0)] = 0 (4.194)

then the field �(x, t) and its conjugate momentum ⇡(y, t) satisfy (exer-
cise 4.17) the equal-time commutation relations

[�(x, t),⇡(y, t)] = i�(x� y) and [�(x, t),�(y, t)] = [⇡(x, t),⇡(y, t)] = 0
(4.195)

which generalize the commutation relations of quantum mechanics

[qj , p`] = i~�j,` and [qj , q`] = [pj , p`] = 0 (4.196)

for a set of coordinates qj and conjugate momenta p`.

Example 4.20 (Fourier Series for a Scalar Field) For a field defined in
a cube of volume V = L3, one often imposes periodic boundary conditions
(section 3.14) in which a displacement of any spatial coordinate by ±L
does not change the value of the field. A Fourier series can represent a
periodic field. Using the relationship (4.100) between Fourier-transform and
Fourier-series representations in 3 dimensions, we expect the Fourier series
representation for the field (4.192) to be

�(x) =
(2⇡)3

V

X

k

1p
(2⇡)32!k

h
a(k)ei(k·x�!kt) + a†(k)e�i(k·x�!kt)

i

=
X

k

1p
2!kV

r
(2⇡)3

V

h
a(k)ei(k·x�!kt) + a†(k)e�i(k·x�!kt)

i
(4.197)

in which the sum over k = (2⇡/L)(`, n,m) is over all (positive and negative)
integers `, n, and m. One can set

ak ⌘
r

(2⇡)3

V
a(k) (4.198)
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and write the field as

�(x) =
X

k

1p
2!k V

h
ak e

i(k·x�!kt) + a†k e
�i(k·x�!kt)

i
. (4.199)

The commutator of Fourier-series annihilation and creation operators is by
(4.36, 4.194 & 4.198)

[ak, a
†
k0 ] =

(2⇡)3

V
[a(k), a†(k0)] =

(2⇡)3

V
�(k � k

0)

=
(2⇡)3

V

Z
ei(k�k0)·x d3x

(2⇡)3
=

(2⇡)3

V

V

(2⇡)3
�k,k0 = �k,k0

(4.200)

in which the Kronecker delta �k,k0 is �`,`0�n,n0�m,m0 . The two formulas for
�(x) (4.192 and 4.199) and the relation (4.198) between a(k) and ak implies
that our sums and integrals over momentum are related by

(2⇡)3

V

X

k

⇠
Z

d3k. (4.201)

Example 4.21 (Di↵usion) The flow rate J (per unit area, per unit time)
of a fixed number of randomly moving particles, such as molecules of a gas
or a liquid, is proportional to the negative gradient of their density ⇢(x, t)

J(x, t) = �Dr⇢(x, t) (4.202)

where D is the di↵usion constant, an equation known as Fick’s law
(Adolf Fick 1829–1901). Since the number of particles is conserved, the 4-
vector J = (⇢,J) obeys the conservation law

@

@t

Z
⇢(x, t) d3x = �

I
J(x, t) · da = �

Z
r · J(x, t)d3x (4.203)

which with Fick’s law (4.202) gives the di↵usion equation

⇢̇(x, t) = �r·J(x, t) = Dr2⇢(x, t) or
�
Dr2 � @t

�
⇢(x, t) = 0. (4.204)

Fourier had in mind such equations when he invented his transform.
If we write the density ⇢(x, t) as the transform

⇢(x, t) =

Z
eik·x+i!t ⇢̃(k,!) d3kd! (4.205)
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then the di↵usion equation becomes

�
Dr2 � @t

�
⇢(x, t) =

Z
eik·x+i!t

�
�D k

2 � i!
�
⇢̃(k,!) d3k d! = 0 (4.206)

which implies the algebraic equation
�
D k

2 + i!
�
⇢̃(k,!) = 0. (4.207)

Our solution (4.180) of this homogeneous equation is

⇢(x, t) =

Z
eik·x+i!t �

�
�D k

2 � i!
�
h(k,!) d3k d! (4.208)

in which h(k,!) is an arbitrary function. Dirac’s delta function requires !
to be imaginary ! = iDk

2, with Dk
2 > 0. So the !-integration is up the

imaginary axis. It is a Laplace transform, and we have

⇢(x, t) =

Z 1

�1
eik·x�Dk2t ⇢̃(k) d3k (4.209)

in which ⇢̃(k) ⌘ h(k, iDk
2). Thus the function ⇢̃(k) is the Fourier transform

of the initial density ⇢(x, 0)

⇢(x, 0) =

Z 1

�1
eik·x ⇢̃(k) d3k. (4.210)

So if the initial density ⇢(x, 0) is concentrated at y

⇢(x, 0) = �(x� y) =

Z 1

�1
eik·(x�y) d3k

(2⇡)3
(4.211)

then its Fourier transform ⇢̃(k) is

⇢̃(k) =
e�ik·y

(2⇡)3
(4.212)

and at later times the density ⇢(x, t) is given by (4.209) as

⇢(x, t) =

Z 1

�1
eik·(x�y)�Dk2t d3k

(2⇡)3
. (4.213)

Using our formula (4.19) for the Fourier transform of a gaussian, we find

⇢(x, t) =
1

(4⇡Dt)3/2
e�(x�y)2/(4Dt). (4.214)

Since the di↵usion equation is linear, it follows (exercise 4.18) that an
arbitrary initial distribution ⇢(y, 0) evolves to the convolution (section 4.6)

⇢(x, t) =
1

(4⇡Dt)3/2

Z
e�(x�y)2/(4Dt) ⇢(y, 0) d3y. (4.215)
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Exercises

4.1 Show that the Fourier integral formula (4.26) for real functions follows
from (4.9) and (4.25).

4.2 Show that the Fourier integral formula (4.26) for real functions implies
(4.27) if f is even and (4.28) if it is odd.

4.3 Derive the formula (4.30) for the square wave (4.29).
4.4 By using the Fourier-transform formulas (4.27 & 4.28), derive the for-

mulas (4.31) and (4.32) for the even and odd extensions of the expo-
nential exp(��|x|).

4.5 For the state | , ti given by Eqs. (4.84 & 4.89), find the wave function
 (x, t) = hx| , ti at time t. Then find the variance of the position
operator at that time. Does it grow as time goes by? How?

4.6 At time t = 0, a particle of mass m is in a gaussian superposition of
momentum eigenstates centered at p = ~K

 (x, 0) = N

Z 1

�1
eikxe�L2(k�K)2 dk. (4.216)

(a) Complete the square in the exponent and then shift k by an ap-
propriate amount so as to do the integral. Where is the particle most
likely to be found? (b) At time t, the wave function  (x, t) is  (x, 0)
but with ikx replaced by ikx� i~k2t/2m. Complete the square in the
new exponent and then shift k by an appropriate amount so as to do
the integral. Where is the particle most likely to be found? (c) Does
the wave packet spread out like t or like

p
t as in classical di↵usion

(15.157)?
4.7 Express a probability distribution P (x) as the Fourier transform of its

characteristic function (4.91).
4.8 Express the characteristic function (4.91) of a probability distribution

as a power series in its moments (4.93).
4.9 Find the characteristic function (4.91) of the gaussian probability dis-

tribution

PG(x, µ,�) =
1

�
p
2⇡

exp

✓
�(x� µ)2

2�2

◆
. (4.217)

4.10 Find the moments µn = E[xn] for n = 0, . . . , 3 of the gaussian proba-
bility distribution PG(x, µ,�).
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4.11 Derive (4.117) from B = r ⇥ A and Ampère’s law r ⇥ B = µ0J .
4.12 Derive (4.118) from (4.117).
4.13 Derive (4.119) from (4.118).
4.14 Use the Green’s function relations (4.112) and (4.113) to show that

(4.119) satisfies (4.117).
4.15 Show that the Laplace transform of tz�1 is the gamma function (5.58)

divided by sz

f(s) =

Z 1

0
e�st tz�1 dt = s�z �(z). (4.218)

4.16 Compute the Laplace transform of 1/
p
t. Hint: let t = u2.

4.17 Show that the commutation relations (4.194) of the annihilation and
creation operators imply the equal-time commutation relations (4.195)
for the field � and its conjugate momentum ⇡.

4.18 Use the linearity of the di↵usion equation and equations (4.211–4.214)
to derive the general solution (4.215) of the di↵usion equation.


