
380 Legendre Functions

Much is known about Legendre functions. The books A Course of Modern
Analysis (Whittaker and Watson, 1927, chap. XV) and Methods of Mathe-
matical Physics (Courant and Hilbert, 1955) are classics. The NIST Digital
Library of Mathematical Functions (dlmf.nist.gov) and the companion NIST
Handbook of Mathematical Functions (Olver et al., 2010) are outstanding.
You can learn more about the CMB in Steven Weinberg’s book Cosmol-
ogy (Weinberg, 2010, chap. 7) and at the website http://camb.info.

Exercises

8.1 Use conditions (8.6) and (8.7) to find P0(x) and P1(x).

8.2 Using the Gram-Schmidt method (section 1.10) to turn the functions
xn into a set of functions Ln(x) that are orthonormal on the interval
[�1, 1] with inner product (8.2), find Ln(x) for n = 0, 1, 2, and 3. Isn’t
Rodrigues’s formula (8.8) easier to use?

8.3 Derive the conditions (8.6–8.7) on the coe�cients ak of the Legendre
polynomial Pn(x) = a0 + a1x+ . . .+ anxn.

8.4 Use equations (8.6–8.7) to find P3(x) and P4(x).

8.5 In superscript notation (6.19), Leibniz’s rule (4.49) for derivatives of
products u v of functions is
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u(n�k) v(k). (8.128)

Use it and Rodrigues’s formula (8.8) to derive the explicit formula (8.9).

8.6 The product rule for derivatives in superscript notation (6.19) is
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u(n�k) v(k). (8.129)

Apply it to Rodrigues’s formula (8.8) with x2 � 1 = (x� 1)(x+1) and
show that the Legendre polynomials satisfy Pn(1) = 1.

8.7 Use Cauchy’s integral formula (5.41) and Rodrigues’s formula (8.55) to
derive Schlaefli’s integral formula (8.56).

8.8 Show that the polynomials (8.57) are orthogonal (8.58) as long as they
satisfy the endpoint condition (8.59).

8.9 Derive the orthogonality relation (8.2) from Rodrigues’s formula (8.8).

8.10 (a) Use the fact that the quantities w = x2 � 1 and wn = wn vanish
at the end points ±1 to show by repeated integrations by parts that in
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superscript notation (6.19)
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(8.130)
(b) Show that the final integral is equal to

In = (2n)!

Z 1

�1
(1� x)n (1 + x)n dx. (8.131)

8.11 (a) Show by integrating by parts that In = (n!)2 22n+1/(2n + 1). (b)
Prove (8.13).

8.12 Suppose that Pn(x) and Qn(x) are two solutions of (8.27). Find an
expression for their wronskian, apart from an overall constant.

8.13 Use the method of sections (6.25 & 6.32) and the solution f(r) = r` to
find a second solution of the ode (8.83).

8.14 For a uniformly charged circle of radius a, find the resulting scalar
potential �(r, ✓) for r < a.

8.15 (a) Find the electrostatic potential V (r, ✓) outside an uncharged per-
fectly conducting sphere of radius R in a vertical uniform static electric
field that tends to E = Eẑ as r ! 1. (b) Find the potential if the free
charge on the sphere is qf .

8.16 Derive (8.126) from (8.124) and (8.125).
8.17 Find the electrostatic potential V (r, ✓) inside a hollow sphere of radius

R if the potential on the sphere is V (R, ✓) = V0 cos2 ✓.
8.18 Find the electrostatic potential V (r, ✓) outside a hollow sphere of radius

R if the potential on the sphere is V (R, ✓) = V0 cos2 ✓.


