Order, chaos, and fractals

## 15.1 Hamilton systems

A Hamilton system of n degrees of freedom has n coordinates  $q_i$  and n momenta  $p_i$  whose time derivatives are partial derivatives

$$\dot{q}_i = \frac{\partial H}{\partial p_i}$$
 and  $\dot{p}_i = -\frac{\partial H}{\partial q_i}$  (15.1)

of a hamiltonian H that is a function of the 2n q's and p's and possibly of the time t. The time derivative of any function F(q, p) of the q's and p's is then

$$\frac{dF}{dt} = \frac{\partial F}{\partial t} + \sum_{i=1}^{n} \frac{\partial F}{\partial q_i} \dot{q}_i + \frac{\partial F}{\partial p_i} \dot{p}_i = \frac{\partial F}{\partial t} + \sum_{i=1}^{n} \frac{\partial F}{\partial q_i} \frac{\partial H}{\partial p_i} - \frac{\partial F}{\partial p_i} \frac{\partial H}{\partial q_i}$$
(15.2)  
$$= \frac{\partial F}{\partial t} + [F, H]$$

in which the last term is the **Poisson bracket** [F, H].

A Hamilton system with n symmetries has n conserved quantities  $C_i$ . If time translation invariance is one of the symmetries, and if the hamiltonian H and the conserved quantities are time independent, then the system is **autonomous**, the hamiltonian is one of the conserved quantites, and its Poisson bracket with each of the conserved quantities vanishes  $[C_i, H] = 0$ . If the conserved quantities have vanishing Poisson brackets  $[C_i, C_j] = 0$ , then they are **in involution**. An autonomous Hamilton system of degree n that has n independent conserved quantities that are in involution is Liouville **integrable**. In principle, one can integrate Hamilton's equations (15.1) for such a system.

**Example 15.1** (Harmonic oscillators). The coordinates  $q_i$  and momenta  $p_i$  of a Hamilton system of n independent harmonic oscillators obey Hamilton's

Order, chaos, and fractals



Figure 15.1 The  $q_1(t)$ ,  $p_1(t)$  coordinates of a harmonic oscillator coupled to another harmonic oscillator by the hamiltonian (15.4) for 0 < t < 100(left) and 0 < t < 500 (right). The initial conditions are  $q_1 = q_2 = 0$  and  $p_1 = p_2 = 1$ , with m = 1,  $\omega_2 = \omega_1/2 = 1/2$ , and  $\lambda = 1/2$ .

equations

$$\dot{q}_i = \frac{p_i}{m_i}$$
 and  $\dot{p}_i = -m_i \omega_i^2 q_i.$  (15.3)

The energy  $E_i = p_i^2/2m_i + m_i\omega_i q_i^2/2$  of each oscillator is conserved. The coordinates  $q_i(t) = a_i \sin(\omega_i(t+\tau_i))$  and momenta  $p_i = a_i m_i \omega_i \cos(\omega_i(t+\tau_i))$  run over the *n*-dimensional surface of an *n*-torus in a q, p phase space of 2n dimensions.

Few systems are integrable. Two coupled harmonic oscillators with

$$H = \frac{p_1^2 + p_2^2}{2m} + \frac{m(\omega_1^2 q_1^2 + \omega_2^2 q_2^2)}{2} + m\omega_1 \omega_2 (q_1 - q_2)^2 + \lambda q_1^2 q_2^2 \left(q_1^2 + q_2^2\right)$$
(15.4)

display complicated behavior as illustrated in Fig. 15.1 for equal masses but different frequencies.

**Example 15.2** (The two-body problem). Two interacting particles moving in empty 3-dimensional space are a system of 6 degrees of freedom with 7 conserved quantities—the energy  $E_1 + E_2$ , the momentum  $\vec{p_1} + \vec{p_2}$ , and the angular momentum  $\vec{r_1} \times \vec{p_1} + \vec{r_2} \times \vec{p_2}$ —which are in involution and independent. The system is integrable. Its motion is ordered, and if bounded, lies on the surface of a 6-torus.

Hamilton systems are special: The 2n time derivatives  $\dot{q}_i$  and  $\dot{p}_i$  satisfy

(exercise 15.1) the identities

$$\frac{\partial \dot{q}_i}{\partial q_j} = -\frac{\partial \dot{p}_j}{\partial p_i}, \quad \frac{\partial \dot{q}_i}{\partial p_j} = \frac{\partial \dot{q}_j}{\partial p_i}, \quad \text{and} \quad \frac{\partial \dot{p}_i}{\partial q_j} = \frac{\partial \dot{p}_j}{\partial q_i}.$$
 (15.5)

The integral

$$A = \oint \sum_{i=1}^{n} p_i \, dq_i \tag{15.6}$$

over a closed trajectory in phase space is a time-independent Poincaré invariant (example 12.9). Areas of phase space are constant in time (example 12.11) along Hamilton trajectories (15.1)

$$\frac{d}{dt} \left( \sum_{i}^{n} \left| \begin{array}{c} \delta p_{i} & \delta q_{i} \\ \Delta p_{i} & \Delta q_{i} \end{array} \right| \right) = 0.$$
(15.7)

Although they are special, few Hamilton systems are integrable. Three interacting particles moving in empty space are a system of 9 degrees of freedom with only 7 independent conserved quantities. The three-body problem is not integrable.

# 15.2 Systems of ordinary differential equations

An autonomous system of n first-order ordinary differential equations

$$\dot{x}_{1} = F_{1}(x_{1}, x_{2}, \dots, x_{n})$$
  

$$\dot{x}_{2} = F_{2}(x_{1}, x_{2}, \dots, x_{n})$$
  

$$\vdots$$
  

$$\dot{x}_{n} = F_{n}(x_{1}, x_{2}, \dots, x_{n}).$$
(15.8)

is more general than it may seem at first sight. For a non-autonomous system of n equations with functions  $F_i(x_1, \ldots, x_n, t)$  is equivalent to an autonomous system of n + 1 equations with  $t = x_{n+1}$  and  $F_{n+1}(x_1, \ldots, x_{n+1}) = 1$ . And a system of n higher-order ordinary differential equations is equivalent to an autonomous first-order system of more than n first-order ordinary differential equations.

**Example 15.3** (Forced van der Pol oscillator). The second-order, timedependent differential equation  $\ddot{y} + \mu(y^2 - 1)\dot{y} + y = a\sin(\omega t)$  describes a forced van der Pol oscillator. Setting  $x_1 = \dot{y}, x_2 = y$ , and  $x_3 = t$ , we may



Figure 15.2 Trajectories of the unforced ( $\omega = a = 0$ ) van der Pol oscillator (15.9) converge to their attractors which are limit cycles. The outward spiral starts from y(0) = 0.01 and  $\dot{y}(0) = 0$  with  $\mu = 1/8$  (left); the inward spiral starts from y(0) = 6 and  $\dot{y}(0) = 0$  with  $\mu = 1/64$  (right).

write it as the first-order autonomous system

$$\dot{x}_1 = -x_2 - \mu(x_2^2 - 1)x_1 + a\sin(\omega x_3),$$
  
$$\dot{x}_2 = x_1, \quad \text{and} \quad \dot{x}_3 = 1$$
(15.9)

which exhibits chaos for certain values of its parameters  $\mu$ , a, and  $\omega$ . The unforced oscillator ( $\omega = a = 0$ ) has trajectories that converge to limit cycles as illustrated in Fig. 15.2. The outward spiral starts from y(0) = 0.01 and  $\dot{y}(0) = 0$  with  $\mu = 1/8$  (left); the inward spiral starts from y(0) = 6 and  $\dot{y}(0) = 0$  with  $\mu = 1/64$  (right).

#### 15.3 Attractors

Hamilton systems evolve in ways that conserve their areas in phase space (15.7), but arbitrary autonomous systems evolve more generally. Phase-space areas of **dissipative** systems typically shrink. If they converge to a point or to a set of points, that point or set is an **attractor**. An attractor may be a point of dimension zero, a loop or **limit cycle** of dimension one, a surface of integral dimension, or a **fractal**—a set whose dimension is not an integer (section 15.6). A fractal attractor is a **strange attractor**.

**Example 15.4** (Lorenz butterfly). The Lorenz system is three first-order differential equations

$$\dot{x} = \sigma (y - x), \qquad \dot{y} = r x - y - x z, \qquad \dot{z} = x y - b z$$
(15.10)



Figure 15.3 The trajectory of the Lorenz system (15.10) for  $0 \le t \le 300$  approaches a strange attractor of dimension  $D_{KY} = 2.06215$ .

in which  $\dot{y}$  and  $\dot{z}$  have the nonlinear terms -xz and xy, and the Prandtl number  $\sigma$ , the Rayleigh number r, and the parameter b are all positive. The Matlab code

```
x0 = [0 8 0]; tspan=[0,300];
[t,x]=ode45(@lorentz,tspan,x0); plot(x(:,1),x(:,3);
function xprime = lorentz(t,x); s = 10; b = 8/3; r =28;
xprime=[ - s*x(1) + s*x(2); r*x(1) - x(2) - x(1)*x(3); ...
- b*x(3) + x(1)*x(2) ]; end
```

generates the plot of x = x(1) and z = x(3) in Fig. 15.3 for initial conditions x = z = 0 and y = 8.

Example 15.5 (Rössler system). The solutions of the differential equations

Order, chaos, and fractals

$$\begin{aligned} \dot{x} &= -y - z \\ \dot{y} &= x + a y \\ \dot{z} &= b + z(x - c) \end{aligned} \tag{15.11}$$

with a = b = 0.2 and initial conditions x(0) = y(0) = z(0) = 0 display a simple limit cycle for c = 2, a period-two limit cycle for c = 3, a period-four limit cycle for c = 4, a period-eight limit cycle for c = 4.15, and a strange attractor for c = 5.7 as shown in Fig. 15.4.

## 15.4 Chaos

Early in the last century, Henri Poincaré studied the three-body problem and found very complicated orbits. In this and many other systems, he found that after a transient period, classical motion assumes one of four forms:

- 1. periodic (a limit cycle)
- 2. steady or damped or stopped
- 3. quasi-periodic (more than one frequency)
- 4. chaotic

Chaos takes different forms in different dynamical systems, and no single definition of chaos fits all of them. Many are **extremely sensitive to initial conditions**. For instance, two trajectories  $x(t) = (x_1(t), \ldots, x_n(t))$  and  $x'(t) = (x'_1(t), \ldots, x'_n(t))$  of an autonomous system (15.8) may diverge from each other exponentially

$$|||x'(t) - x(t)||| = e^{\lambda t} |||x'(0) - x(0)|||.$$
(15.12)

in which  $\lambda$  is a Lyapunov exponent.

A first-order, autonomous dynamical system can be chaotic only it has at least n = 3 dimensions. The driven, damped pendulum (example 15.9), the Lorenz system (example 15.4), and the Rössler system (example 15.5) all have n = 3 and evolve chaotically for certain values of their parameters. Here are three more examples:

**Example 15.6** (Duffing's equation). If one attaches a thin piece of iron to the end of a rod that moves sinusoidally in the x direction at frequency  $\omega$ 





Figure 15.4 The last 10,000 points (x(i), y(i)) of the solution of the Rössler equations (15.11) trace the attractor for initial conditions x(0) = y(0) = z(0) = 0 and various values of the parameter c. For c = 2, the attractor is a simple loop (not shown); for c = 3, it is two loops loop; for c = 4, it is four loops; for c = 4.15, it is eight loops; and for c = 5.7, it is an infinite set of loops of dimension  $D_{KY} = 2.0132$ .

near two magnets, then the x coordinate is described by the forced Duffing equation

$$\ddot{x} + a\dot{x} + bx^{3} + cx = g\sin(\omega t + \phi)$$
(15.13)

and varies chaotically for suitable values of  $a, b, c, g, \omega$ , and  $\phi$ .

**Example 15.7** (Dripping faucet). Drops from a slowly dripping faucet tend to fall regularly at times  $t_n$  separated by a constant interval  $\Delta t = t_{n+1} - t_n$ . At a slightly higher flow rate, the drops fall separated by intervals that alternate in their durations  $\Delta t$ ,  $\Delta T$  in a **period-two** sequence. At some higher flow rates, no regularity is apparent.

**Example 15.8** (Rayleigh-Benard convection). Consider a fluid in a gravitational field above a hot plate and below a cold one. If the difference  $\Delta T$  is small enough, then steady convective cellular flow occurs. But if  $\Delta T$  is above the chaotic threshold, the fluid boils chaotically.

#### 15.5 Maps

Successive crossings  $x_j = (x_{1j}, \ldots, x_{nj})$  from one side to the other of a suitably oriented surface by an *n*-dimensional trajectory form a **Poincaré** map

$$x_{j+1} = M(x_j) \tag{15.14}$$

in a space of n-1 dimensions. Poincaré maps are invertible  $x_j = M^{-1}(x_{j+1})$ . An invertible map can be chaotic only if it has at least two dimensions so that it comes from a dynamical system that has at least three dimensions. A one-dimensional map that is not invertible can display chaos.

The Lyapunov exponent of a smooth one-dimensional map  $x_{j+1} = f(x_j)$  is the limit

$$h(x_1) = \lim_{j \to \infty} \frac{1}{j} \left[ \ln |f'(x_1)| + \ldots + \ln |f'(x_j)| \right].$$
(15.15)

A bounded sequence that has a positive Lyapunov exponent and that does not converge to a periodic sequence is **chaotic** (Alligood et al., 1996, p. 110). Other aspects of chaos lead to other definitions.

**Example 15.9** (Driven, damped pendulum). The angle  $\theta$  of a sinusoidally driven, damped pendulum obeys the differential equation

$$\ddot{\theta} + b\dot{\theta} + \sin\theta = F\cos t \tag{15.16}$$

which is second order and nonautonomous. We put it into autonomous form



3.5

3

2.5

2

1.5

0.5

 $\dot{\theta}$ 

0 -0.5 -1 -2 0 2 3 -3 -1 1  $\theta$ 

Figure 15.5 Poincaré map of the first million crossings of the surface  $x_3 = 0$ (mod  $2\pi$ ) by the trajectory  $(\theta(t), \dot{\theta}(t))$  of the damped driven pendulum (15.16) with b = 0.22 and F = 2.7. The points form a Cantor-set-like strange attractor of dimension  $D_b \simeq 1.38$  (Grebogi et al., 1987). The initial conditions were  $\theta(0) = \dot{\theta}(0) = 0$ .

by defining  $x_1 = \dot{\theta}$ ,  $x_2 = \theta$ , and  $x_3 = t$ . In these variables, the pendulum equation (15.16) is the first-order autonomous system

$$\dot{x}_1 = F \cos x_3 - \sin x_2 - b x_1,$$
  
 $\dot{x}_2 = x_1, \text{ and } \dot{x}_3 = 1$ 
(15.17)

with n = 3 dependent variables. Figure 15.5 displays a Poincaré map of the trajectory of the damped driven pendulum (15.16) with b = 0.22 and F = 2.7. This map is a strange attractor of dimension  $D_b \simeq 1.38$  (Grebogi et al., 1987). The horizontal axis is the angle  $\theta(2\pi j)$  modulo  $2\pi$  [that is,  $\operatorname{sign}(\theta) \mod(|\theta|, 2\pi)$  for  $j = 0, 1, 2, \dots, 10^6$  or the first million crossings of the surface  $x_3 = 0 \mod 2\pi$ .

Order, chaos, and fractals



Figure 15.6 Points  $x_j$  of the logistic map (15.18) for  $29990 \le n \le 30000$ and 10 random starting points  $0 < x_0 < 1$  for  $0.5 \le r \le 4$ . From r = 1 to r = 3, the attractor rises from 0 to 2/3 where it splits into two attractors.

**Example 15.10** (Logistic map). For 0 < r < 4, the one-dimensional logistic map

$$x_{j+1} = r \, x_j (1 - x_j) \tag{15.18}$$

describes a population with a limited food supply as does the differential equation (6.99). Because the quadratic equation for  $x_j$  in terms of  $x_{j+1}$  has two solutions, the logistic map is not invertible. For 0 < r < 1, sequences of  $x_i$ 's starting from any  $0 < x_0 < 1$  converge to 0. This **attractor** begins to rise at r = 1 and reaches 2/3 at r = 3 where it bifurcates into two attractors as shown in Fig. 15.6. These attractors split again at  $r_2 = 1 + \sqrt{6} \approx 3.4495$ , and again at  $r_3 \approx 3.54409$ , and again at  $r_4 \approx 3.5644$ . By  $r_{\infty} \approx 3.569946$ , the attractors have split an infinite number of times. Chaos appears in increasingly striking forms as r exceeds  $r_{\infty}$ . At r = 3.8, two sequences respectively starting from  $x_0 = 0.2$  and  $x'_0 = 0.20001$  differ after 19 iterations by seeming random amounts: 0.218 at n = 21, 0.623 at n = 23, and 0.723 at n = 74. At r = 4, the logistic map (15.18) is totally chaotic and equivalent to the **tent map**  $x_{j+1} = 1 - 2|x_j - 1|$ . The **2x-modulo-1 map**  $x_{j+1} = 2x_j \mod 1$  is similarly chaotic.



Figure 15.7 Points  $x_i$  of the population map (15.19) for  $29990 \le n \le 30000$ and 10 random starting points  $0 < x_0 < 1$  for  $0.5 \le r \le 2$ . For  $0 \le r \le 1$ , the attractor of the population map (15.19) is x = 0. The attractor splits at r = 1 into two attractors until  $r_2 = \sqrt{2}$  where it splits into four. Slightly above  $r_3 \approx 1.544$ , the four attractors split into eight.

**Example 15.11** (Population map). For 0 < r < 2, the map

$$x_{j+1} = r \, x_j (x_j - 1) \tag{15.19}$$

describes (for  $x_j > 0$ ) a population whose rates of reproduction and death respectively are proportional to  $x_i^2$  and  $x_j$ . For r < 1, sequences starting from any  $0 < x_0 < 1$  approach the attractor x = 0 as shown in Fig. 15.7. That attractor splits at r = 1 into two attractors which become four at  $r_2 = \sqrt{2}$ . Somewhat above  $r_3 \approx 1.544$ , the four attractors split into eight. They split again at  $r_4 \approx 1.565$ . Chaos begins as r exceeds 1.57.

Order, chaos, and fractals



Figure 15.8 The first five approximations to the Cantor set.

**Example 15.12** (The Bernoulli shift). The simplest chaotic map is the **Bernoulli shift** in which the initial point  $x_0$  is an arbitrary number between 0 and 1 with the binary-decimal expansion

$$x_0 = \sum_{k=1}^{\infty} 2^{-k} a_k = 0.a_1 a_2 a_3 a_4 \dots$$
(15.20)

and successive points lack  $a_1$ , then  $a_2$ , and so forth:

$$x_1 = 0.a_2a_3a_4a_5\dots, \quad x_2 = 0.a_3a_4a_5a_6\dots, \quad x_3 = 0.a_4a_5a_6a_7\dots$$
 (15.21)

Two unequal irrational numbers  $x_0$  and  $x'_0$  no matter how close generate sequences that roam independently, irregularly, and ergotically over the interval (0, 1).

Example 15.13 (Hénon's map). The two-dimensional map

$$x_{j+1} = f(x_j) + B y_j$$
  

$$y_{j+1} = x_j$$
(15.22)

for  $B \neq 0$  is invertible. If  $f(x_j) = A - x_j^2$ , it is **Hénon's map**, which for A = 1.4 and B = 0.3 is chaotic and converges to the attractor in Fig. 15.10.  $\Box$ 

## 15.6 Fractals

A fractal set has a dimension that is not an integer. How can that be? Felix Hausdorff and Abram Besicovitch have shown how to define the

15.6 Fractals

dimension of a weird set of points. To compute their **box-counting** dimension of a set, we cover it with line segments, squares, cubes, or *n*-dimensional "boxes" of side  $\epsilon$ . If we need  $N(\epsilon)$  boxes, then the fractal dimension D is the limit as  $\epsilon \to 0$ 

$$D_b = \lim_{\epsilon \to 0} \frac{\ln(N(\epsilon))}{\ln(1/\epsilon)}.$$
(15.23)

For instance, we can cover the interval [a, b] with  $N(\epsilon) = (b - a)/\epsilon$  line segments of length  $\epsilon$ , so the dimension of the segment [a, b] is

$$D_b = \lim_{\epsilon \to 0} \frac{\ln(N(\epsilon))}{\ln(1/\epsilon)} = \lim_{\epsilon \to 0} \frac{\ln((b-a)/\epsilon)}{\ln(1/\epsilon)} = 1 + \frac{\ln(b-a)}{\ln(1/\epsilon)} = 1$$
(15.24)

as it should be.

**Example 15.14** (Cantor set). The Cantor set is defined by a limiting process in which the set at the *n*th stage consists of  $2^n$  line segments each of length  $1/3^n$ . The first five approximations to the **Cantor set** are drawn in the figure (15.8). We can cover the *n*th approximation with  $N(\epsilon) = 2^n$  line segments each of length  $\epsilon_n = 1/3^n$ , and so the fractal dimension is

$$D_b = \lim_{\epsilon \to 0} \frac{\ln(N(\epsilon))}{\ln(1/\epsilon)} = \lim_{n \to \infty} \frac{\ln(N(\epsilon_n))}{\ln(1/\epsilon_n)} = \lim_{n \to \infty} \frac{\ln(2^n)}{\ln(3^n)} = \frac{\ln 2}{\ln 3} = 0.6309297\dots$$
(15.25)
which is not an integer or even a rational number.

which is not an integer or even a rational number.

**Example 15.15** (Koch Snowflake). In 1904, the Swedish mathematician Helge von Koch described the Koch curve (or the Koch snowflake), whose construction is shown in Fig. 15.9. With each step, there are 4 times as many line segments, each one being 3 times smaller. The length L of the curve at step n is thus  $L = (4/3)^n$  which grows without limit as  $n \to \infty$ . Its box dimension is

$$D_b = \lim_{n \to \infty} \frac{\ln(N(\epsilon_n))}{\ln(1/\epsilon_n)} = \lim_{n \to \infty} \frac{\ln(4^n)}{\ln(3^n)} = \frac{\ln 4}{\ln 3} = 1.2618595\dots$$
 (15.26)

Closely related to the box-counting dimension is the self-similar dimension  $D_s$ . To define it, we consider the number of self-similar structures of linear size x needed to cover the figure after n steps and take the limit

$$D_s = \lim_{x \to 0} \frac{\ln N(x)}{\ln 1/x}.$$
 (15.27)

In the case of von Koch's curve,  $x = 1/3^n$  and  $N(x) = 4^n$ . So the self-similar

Order, chaos, and fractals





Figure 15.9 Curve of von Koch: Steps 0, 1, 2, and 3 of construction (adapted from Wikipedia).

dimension of von Koch's curve is

$$D_s = \lim_{x \to 0} \frac{\ln N(x)}{\ln 1/x} = \lim_{n \to \infty} \frac{\ln 4^n}{\ln 3^n} = \frac{n \ln 4}{n \ln 3} = \frac{\ln 4}{\ln 3} = 1.2618595\dots$$
 (15.28)

which is equal to its box dimension  $D_{b,K}$  given by (15.26).

Other definitions of the dimension of a set, such as the correlation dimension  $D_2$  (Grassberger and Procaccia, 1983) and the Kaplan-Yorke dimension  $D_{KY}$  (Kaplan and Yorke, 1979), can be easier to measure than the box-counting and self-similar dimensions.

Attractors of fractal dimension are strange. The Lorenz butterfly (exam-



Figure 15.10 The first  $10^4$  points of the strange attractor of Hénon's map (15.13) with A = 1.4 and B = 0.3 and  $(x_0, y_0) = (0, 0)$ .

ple 15.4, Fig. 15.3) is a strange attractor of Kaplan-Yorke dimension  $D_{KY} = 2.06215$ , and the loops of the Rössler system for c = 5.7 (example 15.5, Fig. 15.4) form a strange attractor of dimension  $D_{KY} = 2.0132$  (Sprott, 2003). The Poincaré map of the damped driven pendulum (15.16, Fig. 15.5 is a strange attractor of box-counting dimension  $D_b \approx 1.38$  (Grebogi et al., 1987). Hénon's map (15.22, Fig. 15.10) with A = 1.4 and B = 0.3 is chaotic with a strange attractor of dimension  $D_b = 1.261 \pm 0.003$  (Russell et al., 1980). Chaotic systems often have strange attractors; but chaotic systems can have nonfractal attractors, and nonchaotic systems can have strange attractors.

# **Further Reading**

The books Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Strogatz, 2014), CHAOS: An Introduction to Dynamical Systems (Alligood et al., 1996), and Chaos and Time-Series Analysis (Sprott, 2003) are superb.

### Exercises

- 15.1 Use Hamilton's equations to derive the special relations (15.5) that the time derivatives  $\dot{q}_i$  and  $\dot{p}_i$  satisfy.
- 15.2 A period-one sequence of a map  $x_{i+1} = f(x_i)$  is a point p for which p = f(p). Find the period-one sequences of  $x_{i+1} = rx_i(1 x_i/K)$ .
- 15.3 A period-two sequence of a map  $x_{i+1} = f(x_i)$  is two different points p and q for which q = f(p) and p = f(q). Estimate the period-two sequences of the logistic map f(x) = ax(1-x) for a = 1, 2, and 3. Hint: Graph the functions f(f(x)) and I(x) = x on the interval [0, 1].
- 15.4 A period-three sequence of a map  $x_{i+1} = f(x_i)$  is three different points p, q, and r for which q = f(p), r = f(q), and p = f(r). Li and Yorke have shown that a map with a period-three sequence is chaotic. Estimate the period-three sequences of the map f(x) = 4x(1-x).