
15

Order, chaos, and fractals

15.1 Hamilton systems

A Hamilton system of n degrees of freedom has n coordinates qi and
n momenta pi whose time derivatives are partial derivatives

q̇i =
@H

@pi
and ṗi = � @H

@qi
(15.1)

of a hamiltonian H that is a function of the 2n q’s and p’s and possibly of
the time t. The time derivative of any function F (q, p) of the q’s and p’s is
then

dF
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=
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+
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@qi
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(15.2)

in which the last term is the Poisson bracket [F,H].
A Hamilton system with n symmetries has n conserved quantities Ci. If

time translation invariance is one of the symmetries, and if the hamiltonian
H and the conserved quantities are time independent, then the system is
autonomous, the hamiltonian is one of the conserved quantites, and its
Poisson bracket with each of the conserved quantities vanishes [Ci, H] = 0.
If the conserved quantities have vanishing Poisson brackets [Ci, Cj] = 0, then
they are in involution. An autonomous Hamilton system of degree n that
has n independent conserved quantities that are in involution is Liouville
integrable. In principle, one can integrate Hamilton’s equations (15.1) for
such a system.

Example 15.1 (Harmonic oscillators). The coordinates qi and momenta pi
of a Hamilton system of n independent harmonic oscillators obey Hamilton’s
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Figure 15.1 The q1(t), p1(t) coordinates of a harmonic oscillator coupled
to another harmonic oscillator by the hamiltonian (15.4) for 0 < t < 100
(left) and 0 < t < 500 (right). The initial conditions are q1 = q2 = 0 and
p1 = p2 = 1, with m = 1, !2 = !1/2 = 1/2, and � = 1/2.

equations

q̇i =
pi
mi

and ṗi = �mi!
2
i qi. (15.3)

The energy Ei = p2i /2mi + mi!iq2i /2 of each oscillator is conserved. The
coordinates qi(t) = ai sin(!i(t+⌧i)) and momenta pi = aimi!i cos(!i(t+⌧i))
run over the n-dimensional surface of an n-torus in a q, p phase space of 2n
dimensions.
Few systems are integrable. Two coupled harmonic oscillators with

H =
p21 + p22
2m

+
m(!2

1q
2
1 + !2

2q
2
2)

2
+m!1!2(q1�q2)

2+� q21q
2
2

�
q21 + q22

�
(15.4)

display complicated behavior as illustrated in Fig. 15.1 for equal masses but
di↵erent frequencies.

Example 15.2 (The two-body problem). Two interacting particles moving
in empty 3-dimensional space are a system of 6 degrees of freedom with 7
conserved quantities—the energy E1 +E2, the momentum ~p1 + ~p2, and the
angular momentum ~r1 ⇥ ~p1 + ~r2 ⇥ ~p2—which are in involution and indepen-
dent. The system is integrable. Its motion is ordered, and if bounded, lies
on the surface of a 6-torus.

Hamilton systems are special: The 2n time derivatives q̇i and ṗi satisfy
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(exercise 15.1) the identities

@q̇i
@qj

= � @ṗj
@pi

,
@q̇i
@pj

=
@q̇j
@pi

, and
@ṗi
@qj

=
@ṗj
@qi

. (15.5)

The integral

A =

I nX

i=1

pi dqi (15.6)

over a closed trajectory in phase space is a time-independent Poincaré in-
variant (example 12.9). Areas of phase space are constant in time (exam-
ple 12.11) along Hamilton trajectories (15.1)

d

dt

 
nX

i

����
�pi �qi
�pi �qi

����

!
= 0. (15.7)

Although they are special, few Hamilton systems are integrable. Three
interacting particles moving in empty space are a system of 9 degrees of free-
dom with only 7 independent conserved quantities. The three-body problem
is not integrable.

15.2 Systems of ordinary di↵erential equations

An autonomous system of n first-order ordinary di↵erential equations

ẋ1 = F1(x1, x2, . . . , xn)

ẋ2 = F2(x1, x2, . . . , xn)

...

ẋn = Fn(x1, x2, . . . , xn).

(15.8)

is more general than it may seem at first sight. For a non-autonomous system
of n equations with functions Fi(x1, . . . , xn, t) is equivalent to an autonomous
system of n+1 equations with t = xn+1 and Fn+1(x1, . . . , xn+1) = 1. And a
system of n higher-order ordinary di↵erential equations is equivalent to an
autonomous first-order system of more than n first-order ordinary di↵eren-
tial equations.

Example 15.3 (Forced van der Pol oscillator). The second-order, time-
dependent di↵erential equation ÿ + µ(y2 � 1)ẏ + y = a sin(!t) describes a
forced van der Pol oscillator. Setting x1 = ẏ, x2 = y, and x3 = t, we may



680 Order, chaos, and fractals

Figure 15.2 Trajectories of the unforced (! = a = 0) van der Pol oscillator
(15.9) converge to their attractors which are limit cycles. The outward
spiral starts from y(0) = 0.01 and ẏ(0) = 0 with µ = 1/8 (left); the inward
spiral starts from y(0) = 6 and ẏ(0) = 0 with µ = 1/64 (right).

write it as the first-order autonomous system

ẋ1 = � x2 � µ(x22 � 1)x1 + a sin(!x3),

ẋ2 = x1, and ẋ3 = 1
(15.9)

which exhibits chaos for certain values of its parameters µ, a, and !. The
unforced oscillator (! = a = 0) has trajectories that converge to limit cycles
as illustrated in Fig. 15.2. The outward spiral starts from y(0) = 0.01 and
ẏ(0) = 0 with µ = 1/8 (left); the inward spiral starts from y(0) = 6 and
ẏ(0) = 0 with µ = 1/64 (right).

15.3 Attractors

Hamilton systems evolve in ways that conserve their areas in phase space
(15.7), but arbitrary autonomous systems evolve more generally. Phase-
space areas of dissipative systems typically shrink. If they converge to
a point or to a set of points, that point or set is an attractor. An attractor
may be a point of dimension zero, a loop or limit cycle of dimension one,
a surface of integral dimension, or a fractal—a set whose dimension is not
an integer (section 15.6). A fractal attractor is a strange attractor.

Example 15.4 (Lorenz butterfly). The Lorenz system is three first-order
di↵erential equations

ẋ = � (y � x), ẏ = r x� y � x z, ż = x y � b z (15.10)
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Figure 15.3 The trajectory of the Lorenz system (15.10) for 0  t  300
approaches a strange attractor of dimension DKY = 2.06215.

in which ẏ and ż have the nonlinear terms �x z and x y, and the Prandtl
number �, the Rayleigh number r, and the parameter b are all positive. The
Matlab code

x0 = [0 8 0]; tspan=[0,300];

[t,x]=ode45(@lorentz,tspan,x0); plot(x(:,1),x(:,3);

function xprime = lorentz(t,x); s = 10; b = 8/3; r =28;

xprime=[ - s*x(1) + s*x(2); r*x(1) - x(2) - x(1)*x(3); ...

- b*x(3) + x(1)*x(2) ]; end

generates the plot of x = x(1) and z = x(3) in Fig. 15.3 for initial conditions
x = z = 0 and y = 8.

Example 15.5 (Rössler system). The solutions of the di↵erential equations
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ẋ = � y � z

ẏ = x+ a y

ż = b+ z(x� c)

(15.11)

with a = b = 0.2 and initial conditions x(0) = y(0) = z(0) = 0 display a
simple limit cycle for c = 2, a period-two limit cycle for c = 3, a period-four
limit cycle for c = 4, a period-eigth limit cycle for c = 4.15, and a strange
attractor for c = 5.7 as shown in Fig. 15.4.

15.4 Chaos

Early in the last century, Henri Poincaré studied the three-body problem
and found very complicated orbits. In this and many other systems, he
found that after a transient period, classical motion assumes one of four
forms:

1. periodic (a limit cycle)

2. steady or damped or stopped

3. quasi-periodic (more than one frequency)

4. chaotic

Chaos takes di↵erent forms in di↵erent dynamical systems, and no single
definition of chaos fits all of them. Many are extremely sensitive to ini-
tial conditions. For instance, two trajectories x(t) = (x1(t), . . . , xn(t)) and
x0(t) = (x01(t), . . . , x

0
n(t)) of an autonomous system (15.8) may diverge from

each other exponentially

k|x0(t)� x(t)k| = e�tk|x0(0)� x(0)k|. (15.12)

in which � is a Lyapunov exponent.
A first-order, autonomous dynamical system can be chaotic only it has

at least n = 3 dimensions. The driven, damped pendulum (example 15.9),
the Lorenz system (example 15.4), and the Rössler system (example 15.5)
all have n = 3 and evolve chaotically for certain values of their parameters.
Here are three more examples:

Example 15.6 (Du�ng’s equation). If one attaches a thin piece of iron to
the end of a rod that moves sinusoidally in the x direction at frequency !
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Figure 15.4 The last 10,000 points (x(i), y(i)) of the solution of the Rössler
equations (15.11) trace the attractor for initial conditions x(0) = y(0) =
z(0) = 0 and various values of the parameter c. For c = 2, the attractor is
a simple loop (not shown); for c = 3, it is two loops loop; for c = 4, it is
four loops; for c = 4.15, it is eight loops; and for c = 5.7, it is an infinite
set of loops of dimension DKY = 2.0132.

near two magnets, then the x coordinate is described by the forced Du�ng
equation

ẍ+ aẋ+ bx3 + cx = g sin(!t+ �) (15.13)

and varies chaotically for suitable values of a, b, c, g, !, and �.
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Example 15.7 (Dripping faucet). Drops from a slowly dripping faucet tend
to fall regularly at times tn separated by a constant interval �t = tn+1� tn.
At a slightly higher flow rate, the drops fall separated by intervals that
alternate in their durations �t, �T , �t, �T , �t, �T in a period-two
sequence. At some higher flow rates, no regularity is apparent.

Example 15.8 (Rayleigh-Benard convection). Consider a fluid in a gravi-
tational field above a hot plate and below a cold one. If the di↵erence �T
is small enough, then steady convective cellular flow occurs. But if �T is
above the chaotic threshold, the fluid boils chaotically.

15.5 Maps

Successive crossings xj = (x1j , . . . , xnj) from one side to the other of a
suitably oriented surface by an n-dimensional trajectory form a Poincaré
map

xj+1 = M(xj) (15.14)

in a space of n�1 dimensions. Poincaré maps are invertible xj = M�1(xj+1).
An invertible map can be chaotic only if it has at least two dimensions so
that it comes from a dynamical system that has at least three dimensions.
A one-dimensional map that is not invertible can display chaos.

The Lyapunov exponent of a smooth one-dimensional map xj+1 = f(xj)
is the limit

h(x1) = lim
j!1

1

j

⇥
ln |f 0(x1)|+ . . .+ ln |f 0(xj)|

⇤
. (15.15)

A bounded sequence that has a positive Lyapunov exponent and that does
not converge to a periodic sequence is chaotic (Alligood et al., 1996, p.
110). Other aspects of chaos lead to other definitions.

Example 15.9 (Driven, damped pendulum). The angle ✓ of a sinusoidally
driven, damped pendulum obeys the di↵erential equation

✓̈ + b✓̇ + sin ✓ = F cos t (15.16)

which is second order and nonautonomous. We put it into autonomous form
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Figure 15.5 Poincaré map of the first million crossings of the surface x3 = 0
(mod 2⇡) by the trajectory (✓(t), ✓̇(t)) of the damped driven pendulum
(15.16) with b = 0.22 and F = 2.7. The points form a Cantor-set-like
strange attractor of dimension Db ' 1.38 (Grebogi et al., 1987). The initial
conditions were ✓(0) = ✓̇(0) = 0.

by defining x1 = ✓̇, x2 = ✓, and x3 = t. In these variables, the pendulum
equation (15.16) is the first-order autonomous system

ẋ1 = F cosx3 � sinx2 � b x1,

ẋ2 = x1, and ẋ3 = 1
(15.17)

with n = 3 dependent variables. Figure 15.5 displays a Poincaré map of
the trajectory of the damped driven pendulum (15.16) with b = 0.22 and
F = 2.7. This map is a strange attractor of dimension Db ' 1.38 (Grebogi
et al., 1987). The horizontal axis is the angle ✓(2⇡j) modulo 2⇡ [that is,
sign(✓) mod(|✓|, 2⇡)] for j = 0, 1, 2, . . . , 106 or the first million crossings of
the surface x3 = 0 mod 2⇡.
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Figure 15.6 Points xj of the logistic map (15.18) for 29990  n  30000
and 10 random starting points 0 < x0 < 1 for 0.5  r  4. From r = 1 to
r = 3, the attractor rises from 0 to 2/3 where it splits into two attractors.

Example 15.10 (Logistic map). For 0 < r < 4, the one-dimensional logis-
tic map

xj+1 = r xj(1� xj) (15.18)

describes a population with a limited food supply as does the di↵erential
equation (6.99). Because the quadratic equation for xj in terms of xj+1 has
two solutions, the logistic map is not invertible. For 0 < r < 1, sequences
of xi’s starting from any 0 < x0 < 1 converge to 0. This attractor begins
to rise at r = 1 and reaches 2/3 at r = 3 where it bifurcates into two
attractors as shown in Fig. 15.6. These attractors split again at r2 = 1 +p
6 ⇡ 3.4495, and again at r3 ⇡ 3.54409, and again at r4 ⇡ 3.5644. By

r1 ⇡ 3.569946, the attractors have split an infinite number of times. Chaos
appears in increasingly striking forms as r exceeds r1. At r = 3.8, two
sequences respectively starting from x0 = 0.2 and x00 = 0.20001 di↵er after
19 iterations by seeming random amounts: 0.218 at n = 21, 0.623 at n = 23,
and 0.723 at n = 74. At r = 4, the logistic map (15.18) is totally chaotic
and equivalent to the tent map xj+1 = 1 � 2|xj � 1|. The 2x-modulo-1
map xj+1 = 2xj mod 1 is similarly chaotic.
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Figure 15.7 Points xj of the population map (15.19) for 29990  n  30000
and 10 random starting points 0 < x0 < 1 for 0.5  r  2. For 0  r  1,
the attractor of the population map (15.19) is x = 0. The attractor splits
at r = 1 into two attractors until r2 =

p
2 where it splits into four. Slightly

above r3 ⇡ 1.544, the four attractors split into eight.

Example 15.11 (Population map). For 0 < r < 2, the map

xj+1 = r xj(xj � 1) (15.19)

describes (for xj > 0) a population whose rates of reproduction and death
respectively are proportional to x2j and xj . For r < 1, sequences starting
from any 0 < x0 < 1 approach the attractor x = 0 as shown in Fig. 15.7.
That attractor splits at r = 1 into two attractors which become four at
r2 =

p
2. Somewhat above r3 ⇡ 1.544, the four attractors split into eight.

They split again at r4 ⇡ 1.565. Chaos begins as r exceeds 1.57.
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Figure 15.8 The first five approximations to the Cantor set.

Example 15.12 (The Bernoulli shift). The simplest chaotic map is the
Bernoulli shift in which the initial point x0 is an arbitrary number between
0 and 1 with the binary-decimal expansion

x0 =
1X

k=1

2�kak = 0.a1a2a3a4 . . . (15.20)

and successive points lack a1, then a2, and so forth:

x1 = 0.a2a3a4a5 . . . , x2 = 0.a3a4a5a6 . . . , x3 = 0.a4a5a6a7 . . . . (15.21)

Two unequal irrational numbers x0 and x00 no matter how close generate
sequences that roam independently, irregularly, and ergotically over the in-
terval (0, 1).

Example 15.13 (Hénon’s map). The two-dimensional map

xj+1 = f(xj) +B yj

yj+1 = xj
(15.22)

for B 6= 0 is invertible. If f(xj) = A�x2j , it is Hénon’s map, which for A =
1.4 and B = 0.3 is chaotic and converges to the attractor in Fig. 15.10.

15.6 Fractals

A fractal set has a dimension that is not an integer. How can that be?
Felix Hausdor↵ and Abram Besicovitch have shown how to define the
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dimension of a weird set of points. To compute their box-counting dimen-
sion of a set, we cover it with line segments, squares, cubes, or n-dimensional
“boxes” of side ✏. If we need N(✏) boxes, then the fractal dimension D is
the limit as ✏ ! 0

Db = lim
✏!0

ln(N(✏))

ln(1/✏)
. (15.23)

For instance, we can cover the interval [a, b] with N(✏) = (b � a)/✏ line
segments of length ✏, so the dimension of the segment [a, b] is

Db = lim
✏!0

ln(N(✏))

ln(1/✏)
= lim

✏!0

ln((b� a)/✏)

ln(1/✏)
= 1 +

ln(b� a)

ln(1/✏)
= 1 (15.24)

as it should be.

Example 15.14 (Cantor set). The Cantor set is defined by a limiting pro-
cess in which the set at the nth stage consists of 2n line segments each of
length 1/3n. The first five approximations to the Cantor set are drawn in
the figure (15.8). We can cover the nth approximation with N(✏) = 2n line
segments each of length ✏n = 1/3n, and so the fractal dimension is

Db = lim
✏!0

ln(N(✏))

ln(1/✏)
= lim

n!1

ln(N(✏n))

ln(1/✏n)
= lim

n!1

ln(2n)

ln(3n)
=

ln 2

ln 3
= 0.6309297 . . .

(15.25)
which is not an integer or even a rational number.

Example 15.15 (Koch Snowflake). In 1904, the Swedish mathematician
Helge von Koch described the Koch curve (or the Koch snowflake), whose
construction is shown in Fig. 15.9. With each step, there are 4 times as many
line segments, each one being 3 times smaller. The length L of the curve at
step n is thus L = (4/3)n which grows without limit as n ! 1. Its box
dimension is

Db = lim
n!1

ln(N(✏n))

ln(1/✏n)
= lim

n!1

ln(4n)

ln(3n)
=

ln 4

ln 3
= 1.2618595 . . . (15.26)

Closely related to the box-counting dimension is the self-similar dimen-
sion Ds. To define it, we consider the number of self-similar structures of
linear size x needed to cover the figure after n steps and take the limit

Ds = lim
x!0

lnN(x)

ln 1/x
. (15.27)

In the case of von Koch’s curve, x = 1/3n and N(x) = 4n. So the self-similar
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The Koch Snowflake

Figure 15.9 Curve of von Koch: Steps 0, 1, 2, and 3 of construction (adapted
from Wikipedia).

dimension of von Koch’s curve is

Ds = lim
x!0

lnN(x)

ln 1/x
= lim

n!1

ln 4n

ln 3n
=

n ln 4

n ln 3
=

ln 4

ln 3
= 1.2618595 . . . (15.28)

which is equal to its box dimension Db,K given by (15.26).
Other definitions of the dimension of a set, such as the correlation di-

mension D2 (Grassberger and Procaccia, 1983) and the Kaplan-Yorke di-
mension DKY (Kaplan and Yorke, 1979), can be easier to measure than the
box-counting and self-similar dimensions.
Attractors of fractal dimension are strange. The Lorenz butterfly (exam-
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Figure 15.10 The first 104 points of the strange attractor of Hénon’s map
(15.13) with A = 1.4 and B = 0.3 and (x0, y0) = (0, 0).

ple 15.4, Fig. 15.3) is a strange attractor of Kaplan-Yorke dimension DKY =
2.06215, and the loops of the Rössler system for c = 5.7 (example 15.5,
Fig. 15.4) form a strange attractor of dimension DKY = 2.0132 (Sprott,
2003). The Poincaré map of the damped driven pendulum (15.16, Fig. 15.5
is a strange attractor of box-counting dimension Db ⇡ 1.38 (Grebogi et al.,
1987). Hénon’s map (15.22, Fig. 15.10) with A = 1.4 and B = 0.3 is chaotic
with a strange attractor of dimension Db = 1.261 ± 0.003 (Russell et al.,
1980). Chaotic systems often have strange attractors; but chaotic systems
can have nonfractal attractors, and nonchaotic systems can have strange
attractors.

Further Reading

The books Nonlinear Dynamics and Chaos: With Applications to Physics,
Biology, Chemistry, and Engineering (Strogatz, 2014), CHAOS: An Intro-
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duction to Dynamical Systems (Alligood et al., 1996), and Chaos and Time-
Series Analysis (Sprott, 2003) are superb.

Exercises

15.1 Use Hamilton’s equations to derive the special relations (15.5) that the
time derivatives q̇i and ṗi satisfy.

15.2 A period-one sequence of a map xi+1 = f(xi) is a point p for which
p = f(p). Find the period-one sequences of xi+1 = rxi(1� xi/K).

15.3 A period-two sequence of a map xi+1 = f(xi) is two di↵erent points
p and q for which q = f(p) and p = f(q). Estimate the period-two
sequences of the logistic map f(x) = ax(1 � x) for a = 1, 2, and 3.
Hint: Graph the functions f(f(x)) and I(x) = x on the interval [0, 1].

15.4 A period-three sequence of a map xi+1 = f(xi) is three di↵erent points
p, q, and r for which q = f(p), r = f(q), and p = f(r). Li and Yorke
have shown that a map with a period-three sequence is chaotic. Esti-
mate the period-three sequences of the map f(x) = 4x(1� x).


