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the basic vectors, rather than leave their lengths arbitrary, and so
introduce a further stage of simplification into the representation.
However, it is possible to normalize them only if the parameters
which label them all take on discrete values. If any of these para-
meters are continuous variables that can take on all values in a range,
the basic vectors are eigenvectors of some observable belonging to
eigenvalues in a range and are of infinite length, from the discussion
in § 10 (see p. 39 and top of p. 40). Some.other procedure is then
needed to fix the numerical factors by which the basic vectors may
be multiplied. To get a convenient method of handling this question
anew mathematical notation is required, which will be given in the
next section. ‘

15. The § function

Our work in § 10 led us to consider quantities involving a certain
kind of infinity. To get a precise notation for dealing with these
infinities, we introduce a quantity 8(x) depending on a parameter x
satisfying the conditions

f d(x)dx =1
—

(2)
d(x) = 0 for £ 0.

To get a picture of 3(x), take a function of the real variable # which
vanishes everywhere except inside a small domain, of length ¢ say,
surrounding the origin # = 0, and which is so large inside this domain
that its integral over this domain is unity. The exact shape of the
function inside this domain does not matter, provided there are no
unnecessarily wild variations (for example provided the function
is always of order €~!). Then in the limit € = 0 this function will go
over into &(x).

3(x) is not a function of x according to the usual mathematical
definition of a function, which requires a function to have a definite
value for each point in its domain, but is something more general,
which we may call an ‘improper function’ to show up its difference
from a function defined by the usual definition. Thus 8(x) is not a
quantity which can be generally used in mathematical analysis like
an ordinary function, but its use must be confined to certain simple
types of expression for which it is obvious that no inconsistency
can arise.
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The most important property of &(x) is exemplified by the follow-
ing equation,

[ f@)s(@) dz = f(0), (3)

where f(x) is any continuous function of . We can easily see the
validity of this equation from the above picture of §(x). The left-
hand side of (3) can depend only on the values of f(x) very close
to the origin, so that we may replace f(x) by its value at the origin,
f(0), without essential error. Equation (3) then follows from the
first of equations (2). By making a change of origin in (3), we can
deduce the formula

[ f@)d(@—a) de = f(a), (4)

where a is any real number. Thus the process of multiplying a function
of x by d(x—a) and integrating over all x is equivalent to the process of
substituting a for xz. This general result holds also if the function of z is
not a numerical one, but is a vector or linear operator depending on z.

The range of integration in (3) and (4) need not be from —oo to co,
but may be over any domain surrounding the critical point at which
the 6 function does not vanish. In future the limits of integration
will usually be omitted in such equations, it being understood that
the domain of integration is a suitable one.

Equations (3) and (4) show that, although an improper function
does not itself have a well-defined value, when it occurs as a factor
in an integrand the integral has a well-defined value. In quantum
theory, whenever an improper function appears, it will be something
which is to be used ultimately in an integrand. Therefore it should be
possible to rewrite the theory in a form in which the improper func-
tions appear all through only in integrands. One could then eliminate
the improper functions altogether. The use of improper functions
thus does not involve any lack of rigour in the theory, but is merely
a convenient notation, enabling us to express in a concise form
certain relations which we could, if necessary, rewrite in a form not
involving improper functions, but only in a cumbersome way which
would tend to obscure the argument.

An alternative way of defining the 3 function is as the differential
coefficient ¢’(x) of the function «(x) given by

e(x) =0 (z<0)
1 (x> 0). } (%)

I
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We may verify that this is equivalent to the previous definition by
substituting €'(z) for 5(x) in the left-hand side of (3) and integrating
by parts. We find, for g, and g, two positive numbers,

[ f)e @) de = [f@e@),— [ ['@)ela) de

—fg2 —f3
= flg)— [ f'(@) de
0
= f(0),

in agreement with (3). The & function appears whenever one differen-
tiates a discontinuous function.

There are a number of elementary equations which one can write
down about 8 functions. These equations are essentially rules of
manipulation for algebraic work involving § functions. The meaning
of any of these equations is that its two sides give equivalent results
as factors in an integrand.

Examples of such equations are

§(—x) = 8(x) : (6)

z8(z) = 0, (7)

d(ax) = a~1(x) (a > 0), (8)

3(x?—a?) = ja~o(x—a)+d(z+a)} (a >0), (9)

f S(@a—z) dz 8(x—b) = 8(a—b), (10)
f@)d(x—a) = f(a)s(z—a). (11)

Equation (6), which merely states that 8(z) is an even function of its
variable z is trivial. To verify (7) take any continuous function of
z, f(x). Then - -
f f(2)z 8(x) do = 0,

from (3). Thus z3(x) as a factor in an integrand is equivalent to
zero, which is just the meaning of (7). (8) and (9) may be verified
by similar elementary arguments. To verify (10) take any continuous
function of a, f(a). Then

f f(a) da f S(a—=) dx §(x—b) = f S(z—b) dz f f(a) da 8(a—z)
= f S(z—b) da f(z) = f f(a) da 5(a—b).

Thus the two sides of (10) are equivalent as factors in an integrand
with a as variable of integration. It may be shown in the same way
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that they are equivalent also as factors in an integrand with b as
variable of integration, so that equation (10) is justified from either
of these points of view. Equation (11) is also easily justified, with
the help of (4), from two points of view.

Equation (10) would be given by an application of (4) with
f(x) = 8(x—b). We have here an illustration of the fact that we may
often use an improper function as though it were an ordinary con-
tinuous function, without getting a wrong result.

Equation (7) shows that, whenever one divides both sides of an
equation by a variable x which can take on the value zero, one
should add on to one side an arbitrary multiple of 8(z), i.e. from an

equation 4—B (12)
one cannot infer Az = Bz,
but only Alx = Blx+-cd(x), (13)

where ¢ is unknown.
As an illustration of work with the 8 function, we may consider the
differentiation of log z. The usual formula

d 1
Elogw == (14)

requires examination for the neighbourhood of z = 0. In order to
make the reciprocal function 1/x well defined in the neighbourhood
of z = 0 (in the sense of an improper function) we must impose on
it an extra condition, such as that its integral from —e to € vanishes.
With this extra condition, the integral of the right-hand side of (14)
from —e to ¢ vanishes, while that of the left-hand side of (14) equals
log (—1), so that (14) is not a correct equation. To correct it, we must
remember that, taking principal values, logx has a pure imaginary
term i for negative values of z. As z passes through the value zero
this pure imaginary term vanishes discontinuously. The differen-
tiation of this pure imaginary term gives us the result —in3(x), so
that (14) should read

C—Z%logx ::%_iﬂg(x)' (15)
The particular combination of reciprocal function and & function
appearing in (15) plays an important part in the quantum theory of
collision processes (see § 50).
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