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Figure 6.4 The field �(x) of the soliton (6.435) at rest (v = 0) at position
x0 = 0 for � = 1 = �0. The energy density of the field vanishes when
� = ±�0 = ±1. The energy of this soliton is concentrated at x = 0.

in which C is a constant of integration.

The equations of particle physics are nonlinear. Physicists usually use
perturbation theory to cope with the nonlinearities. But occasionally they
focus on the nonlinearities and treat the fields classically or semi-classically.
To keep things relatively simple, we’ll work in a space-time of only two
dimensions and consider a model field theory described by the action density

L =
1

2

⇣
�̇2 � �02

⌘
� V (�) (6.427)

in which V is a simple function of the field �. Lagrange’s equation for this
theory is

�̈� �00 = �dV

d�
. (6.428)
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We can convert this partial di↵erential equation to an ordinary one by mak-
ing the field � depend only upon the combination u = x � v t rather than
upon both x and t. We then have �̇ = � v �u. With this restriction to
traveling-wave solutions, Lagrange’s equation reduces to

(1� v2)�uu =
dV

d�
. (6.429)

We multiply both sides of this equation by �u

(1� v2)�u �uu =
dV

d�
�u (6.430)

and integrate both sides to get (1� v2) 1
2 �

2
u = V+E in which E is a constant

of integration

E = 1
2 (1� v2) �2u�V (�). (6.431)

We can convert (exercise 6.37) this equation into a problem of integration

u� u0 =

Z p
1� v2p

2(E+V (�))
d�. (6.432)

By inverting the resulting equation relating u to �, we may find the soliton
solution �(u� u0), which is a lump of energy traveling with speed v.

Example 6.48 (Soliton of the �4 Theory) To simplify the integration
(6.432), we take as the action density

L =
1

2

⇣
�̇2 � �02

⌘
�


�2

2

�
�2 � �20

�2 � E

�
. (6.433)

Our formal solution (6.432) gives

u� u0 = ±
Z p

1� v2

�
�
�2 � �20

� d� = ⌥
p
1� v2

��0
tanh�1(�/�0) (6.434)

or

�(x� vt) = ⌥�0 tanh


��0

x� x0 � v(t� t0)p
1� v2

�
(6.435)

which is a soliton (or an antisoliton) at x0 + v(t� t0). A unit soliton at rest
is plotted in Fig. 6.4. Its energy is concentrated at x = 0 where |�2 � �20| is
maximal.
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Exercises

6.1 In rectangular coordinates, the curl of a curl is by definition (6.40)

(r ⇥ (r ⇥ E))i =
3X

j,k=1

✏ijk@j(r ⇥ E)k =
3X

j,k,`,m=1

✏ijk@j✏k`m@`Em.

(6.436)
Use Levi-Civita’s identity (1.449) to show that

r ⇥ (r ⇥ E) = r(r · E) � 4E. (6.437)

This formula defines 4E in any system of orthogonal coordinates.

6.2 Show that since the Bessel function Jn(x) satisfies Bessel’s equation
(6.48), the function Pn(⇢) = Jn(k⇢) satisfies (6.47).

6.3 Show that (6.58) implies that Rk,`(r) = j`(kr) satisfies (6.57).

6.4 Use (6.56, 6.57), and �00
m = �m2�m to show in detail that the product

f(r, ✓,�) = Rk,`(r)⇥`,m(✓)�m(�) satisfies �4f = k2f .

6.5 Replacing Helmholtz’s k2 by 2m(E � V (r))/~2, we get Schrödinger’s
equation

�(~2/2m)4 (r, ✓,�) + V (r) (r, ✓,�) = E (r, ✓,�). (6.438)

Let  (r, ✓,�) = Rn,`(r)⇥`,m(✓)eim� in which ⇥`,m satisfies (6.56) and
show that the radial function Rn,` must obey

�
�
r2R0

n,`

�0
/r2 +

⇥
`(`+ 1)/r2 + 2mV/~2

⇤
Rn,` = 2mEn,`Rn,`/~2.

(6.439)

6.6 Use the empty-space Maxwell’s equationsr · B = 0,r ⇥ E + Ḃ = 0,
r · E = 0, and r ⇥ B � Ė/c2 = 0 and the formula (6.437) to show
that in vacuum 4E = Ë/c2 and 4B = B̈/c2.

6.7 Argue from symmetry and anti-symmetry that [�a, �b]@a@b = 0 in which
the sums over a and b run from 0 to 3.

6.8 Suppose a voltage V (t) = V sin(!t) is applied to a resistor of R (⌦) in
series with a capacitor of capacitance C (F ). If the current through
the circuit at time t = 0 is zero, what is the current at time t?

6.9 (a) Is
�
1 + x2 + y2

��3/2 ⇥
(1 + y2)y dx+ (1 + x2)x dy

⇤
= 0 exact? (b)

Find its general integral and solution y(x). Use section 6.11.

6.10 (a) Separate the variables of the ODE (1+ y2)y dx+ (1+ x2)x dy = 0.
(b) Find its general integral and solution y(x).

6.11 Find the general solution to the di↵erential equation y0 + y/x = c/x.

6.12 Find the general solution to the di↵erential equation y0+xy = ce�x2/2.
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6.13 James Bernoulli studied ODEs of the form y0 + p y = q yn in which p
and q are functions of x. Division by yn and the substitution v = y1�n

gives us the equation v0+(1�n)p v = (1�n) q which is soluble as shown
in section (6.16). Use this method to solve the ODE y0�y/2x = 5x2y5.

6.14 Integrate the ODE (xy + 1) dx + 2x2(2xy � 1) dy = 0. Hint: Use the
variable v(x) = xy(x) instead of y(x).

6.15 Show that the points x = ±1 and 1 are regular singular points of
Legendre’s equation (6.181).

6.16 Use the vanishing of the coe�cient of every power of x in (6.185) and
the notation (6.187) to derive the recurrence relation (6.188).

6.17 In example 6.29, derive the recursion relation for r = 1 and discuss the
resulting eigenvalue equation.

6.18 In example 6.29, show that the solutions associated with the roots
r = 0 and r = 1 are the same.

6.19 For a hydrogen atom, we set V (r) = �e2/4⇡✏0r ⌘ �q2/r in (6.439)
and get (r2R0

n,`)
0+

⇥
(2m/~2)

�
En,` + Zq2/r

�
r2 � `(`+ 1)

⇤
Rn,` = 0. So

at big r, R00
n,` ⇡ �2mEn,`Rn,`/~2 and Rn,` ⇠ exp(�

p
�2mEn,`r/~).

At tiny r, (r2R0
n,`)

0 ⇡ `(` + 1)Rn,` and Rn,`(r) ⇠ r`. Set Rn,`(r) =

r` exp(�
p
�2mEn,`r/~)Pn,`(r) and apply the method of Frobenius to

find the values of En,` for which Rn,` is suitably normalizable.

6.20 Show that as long as the matrix Ykj = y
(`

j

)
k (xj) is nonsingular, the n

boundary conditions

bj = y(`j)(xj) =
nX

k=1

ck y
(`

j

)
k (xj) (6.440)

determine the n coe�cients ck of the expansion (6.222) to be

CT = BT Y�1 or Ck =
nX

j=1

bjY�1
jk . (6.441)

6.21 Show that if the real and imaginary parts u1, u2, v1, and v2 of  and �
satisfy boundary conditions at x = a and x = b that make the boundary
term (6.235) vanish, then its complex analog (6.242) also vanishes.

6.22 Show that if the real and imaginary parts u1, u2, v1, and v2 of  and �
satisfy boundary conditions at x = a and x = b that make the boundary
term (6.235) vanish, and if the di↵erential operator L is real and self
adjoint, then (6.238) implies (6.243).

6.23 Show that if D is the set of all twice-di↵erentiable functions u(x) on
[a, b] that satisfy Dirichlet’s boundary conditions (6.245) and if the
function p(x) is continuous and positive on [a, b], then the adjoint set


