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Figure 6.4 The field ¢(z) of the soliton (6.435) at rest (v = 0) at position
g = 0 for A = 1 = ¢9. The energy density of the field vanishes when
¢ = +¢9 = +1. The energy of this soliton is concentrated at x = 0.
in which C' is a constant of integration. O

The equations of particle physics are nonlinear. Physicists usually use
perturbation theory to cope with the nonlinearities. But occasionally they
focus on the nonlinearities and treat the classically or semi-classically.
To keep things relatively simple, we’ll work in a space-time of only two
dimensions and consider a model field theory described by the action density

L= (#-¢) - V() (6.427)

in which V is a simple function of the field ¢. Lagrange’s equation for this
theory is
av

i (6.428)

6-¢" =
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We can convert this partial differential equation to an ordinary one by mak-
ing the field ¢ depend only upon the combination v = = — vt rather than

upon both z and ¢t. We then have qb = —v¢,. With this restriction to
traveling-wave solutions, Lagrange’s equation reduces to
av
1—0%) s = ——. 6.429
(1= b = 52 (6:429)
We multiply both sides of this equation by ¢,
‘ dv
1—? u Puu = 57 Pu A4
(1 —0")dud 0 ¢ (6.430)

and integrate both sides to get (1 — v?) L $2 = V+FE in which E is a constant

of integration

2

E=1(1-v%) ¢;— V(). (6.431)
We can convert (exercise 6.37) this equation into a problem of integration

\/1—112
V2E V()

By inverting the resulting equation relating u to ¢, we may find the soliton

(6.432)

U — Uy =

solution ¢(u — ug), which is a lump of energy traveling with speed v.

Example 6.48 (Soliton of the ¢* Theory) To simplify the integration
(6.432), we take as the action density

i 2
= (#-7) - [2 (0 —48)" —B|. (6.433)

Our formal solution (6.432) gives

1 — 12 J1 — 902
/A L-v ¢_q:1m” tanh = (¢/do)  (6.434)

U —uyg =

or
v(t —to)

x
V1—0?

which is a soliton (or an antisoliton) at xo + v(t —tp). A unit soliton at rest

é(x — vt) = Fo tanh | Ao

(6.435)

is plotted in Fig. 6.4. Its energy is concentrated at x = 0 where |¢? — ¢3]| is
maximal. O
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Exercises

In rectangular coordinates, the curl of a curl is by definition (6.40)

3 3
(V X (V X E))z = Z Eijkaj(v X E)k = Z GijkajekgmagEm.
Jk=1 3 k&m=1
(6.436)
Use Levi-Civita’s identity (1.449) to show that
VX (VXE)=V(V-E)—- AE. (6.437)

This formula defines A FE in any system of orthogonal coordinates.
Show that since the Bessel function J,(z) satisfies Bessel’s equation
(6.48), the function P,(p) = J,(kp) satisfies (6.47).

Show that (6.58) implies that Ry ¢(r) = js(kr) satisfies (6.57).

Use (6.56, 6.57), and ®” = —m?2®,, to show in detail that the product
f(r,0,¢) = Rio(r) ©pn(0) (o) satisfies —Af = k2 f.

Replacing Helmholtz’s k2 by 2m(E — V(r))/h?, we get Schrodinger’s
equation

—(B2/2m) N (r, 0, 0) + V(1) (r, 0, ¢) = Ep(r, 0, ¢). (6.438)

Let ¥(r,0,¢) = Ry, ()07, (0)e™? in which Oy, satisfies (6.56) and
show that the radial function R,, , must obey

— (rPRy) [r? + [€(€+ 1) /r? + 2mV /%] Ry o = 2mEy ¢ Ry o/ 1.

(6.439)

Use the empty-space Maxwell’s equations V- B =0,V X E + B =0,

V-E=0,and V x B — E/c? = 0 and the formula (6.437) to show

that in vacuum AE = E/¢? and AB = B/c2.

Argue from symmetry and anti-symmetry that [y, v%]0,0, = 0 in which

the sums over a and b run from 0 to 3.

Suppose a voltage V() = V sin(wt) is applied to a resistor of R () in

series with a capacitor of capacitance C' (F'). If the current through

the circuit at time ¢ = 0 is zero, what is the current at time ¢?

(a) Is (1+a2%+ y2)73/2 (14 y?)yde + (14 2?)zdy] = 0 exact? (b)

Find its general integral and solution y(z). Use section 6.11.

6.10 (a) Separate the variables of the ODE (1 +y?)ydx + (1 + 22)z dy = 0.

(b) Find its general integral and solution y(z).

6.11 Find the general solution to the differential equation y' + y/x = ¢/x.

6.12 Find the general solution to the differential equation 3’ +zy = ce

—x2/2
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6.13 James Bernoulli studied ODEs of the form 3/ + py = qy" in which p
and ¢ are functions of x. Division by 3™ and the substitution v = y' =™
gives us the equation v+ (1—n)pv = (1—n) ¢ which is soluble as shown
in section (6.16). Use this method to solve the ODE ¢’ —y/2z = 5z%y°.

6.14 Integrate the ODE (zy + 1) dx + 22%(22y — 1) dy = 0. Hint: Use the
variable v(x) = zy(x) instead of y(x).

6.15 Show that the points x = +1 and oo are regular singular points of
Legendre’s equation (6.181).

6.16 Use the vanishing of the coefficient of every power of x in (6.185) and
the notation (6.187) to derive the recurrence relation (6.188).

6.17 In example 6.29, derive the recursion relation for » = 1 and discuss the
resulting eigenvalue equation.

6.18 In example 6.29, show that the solutions associated with the roots
r =0 and r = 1 are the same.

6.19 For a hydrogen atom, we set V(r) = —e?/4meqr = —¢*/r in (6.439)
and get (TZR;M)’—F [(2m/B?) (Enge + Z¢*/7) 1* — (L +1)] Rpy = 0. So
at big r, R} , ~ —2mEy ¢Ryo/h* and Ry ~ exp(—\/—2mE, gr/h).
At tiny 7, (TQR;M)' ~ U0+ 1)Ryyp and Ry (r) ~ 18 Set R, (r) =
rt exp(—+/—2mE,, ¢r/h)P, ¢(r) and apply the method of Frobenius to
find the values of E,, , for which R, , is suitably normalizable.

6.20 Show that as long as the matrix Vj; = y,(fj)(xj) is nonsingular, the n
boundary conditions

, ¢
determine the n coefficients ¢ of the expansion (6.222) to be
CT=B'"Yy' o Cp=) bY;" (6.441)
j=1

6.21 Show that if the real and imaginary parts wy, uo, v1, and vs of ¥ and x
satisfy boundary conditions at z = a and x = b that make the boundary
term (6.235) vanish, then its complex analog (6.242) also vanishes.

6.22 Show that if the real and imaginary parts ui, uo, v1, and ve of ¢ and x
satisfy boundary conditions at = a and x = b that make the boundary
term (6.235) vanish, and if the differential operator L is real and self
adjoint, then (6.238) implies (6.243).

6.23 Show that if D is the set of all twice-differentiable functions u(z) on
[a,b] that satisfy Dirichlet’s boundary conditions (6.245) and if the
function p(z) is continuous and positive on [a, b], then the adjoint set



