
3.1 The Fourier Transform 119

One often needs to relate a function’s Fourier series to its Fourier trans-
form. So let’s compare the Fourier series (3.1) for the function f(x) on the
interval [�L/2, L/2] with its Fourier transform (3.9) in the limit of large L
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in which kn = 2⇡n/L = 2⇡y/L. Now fn = f̂(y), and so by the definition
(3.6) of f̃(k), we have fn = f̂(Lk/2⇡) =
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Going the other way, we set f̃(k) =
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Example 3.1 (The Fourier Transform of a Gaussian Is a Gaussian) The
Fourier transform of the gaussian f(x) = exp(�m2 x2) is
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We complete the square in the exponent:
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As we shall see in Sec. 5.14 when we study analytic functions, we may shift
x to x� ik/2m2, so the term ik/2m2 in the exponential has no e↵ect on the
value of the x-integral.
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Thus, the Fourier transform of a gaussian is another gaussian
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But the two gaussians are very di↵erent: if the gaussian f(x) = exp(�m2x2)
decreases slowly as x ! 1 because m is small (or quickly because m is big),


