3.1 The Fourier Transform 119

One often needs to relate a function’s Fourier series to its Fourier trans-
form. So let’s compare the Fourier series (3.1) for the function f(z) on the
interval [—L/2, L/2] with its Fourier transform (3.9) in the limit of large L
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in which k, = 27n/L = 2ry/L. Now f, = f(y), and so by the definition
(3.6) of f(k), we have f, = f(Lk/2r) = +/2n/L f(k). Thus, to get the

Fourier series from the Fourier transform, we multiply the series by 27/L
and use the Fourier transform at k,, divided by /27
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Going the other way, we set f =/ L/27 fn, = \/L/27 fi1k/2x) and find
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Example 3.1 (The Fourier Transform of a Gaussian Is a Gaussian) The

Fourier transform of the gaussian f(z) = exp(—m? z?) is
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We complete the square in the exponent:
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As we shall see in Sec. 5.14 when we study analytic functions, we may shift
x to x —ik/2m?, so the term ik/2m? in the exponential has no effect on the
value of the z-integral.
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Thus, the Fourier transform of a gaussian is another gaussian
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But the two gaussians are very different: if the gaussian f(x) = exp(—m“x
decreases slowly as x — oo because m is small (or quickly because m is big),



