A differential operator of the form

\[L = \frac{d}{dx} \left(p(x) \frac{d}{dx} \right) + q(x) \]

is said to be in **self-adjoint form**.

Why is that good? If \(L \) is self-adjoint, then

\[L u = (p u')' + q u \]

and

\[
\int_a^b v^* L u \, dx = \int_a^b \left[(p u')' + q u \right] v^* \, dx \\
= \left[-pu' v^* + u q v^* \right]_a^b + \left[v^* pu' \right]_a^b \\
= \int_a^b \left[u p v^{\prime\prime} + u q v' \right] \, dx - \left[p u' v^* \right]_a^b + \left[v^* pu' \right]_a^b \\
= \int_a^b u L v^* \, dx + \left[v^* pu' - v' pu \right]_a^b
\]

Suppose now that the boundary terms vanish. Then

\[
\int_a^b v^* L u \, dx = \int_a^b u L v^* \, dx = \int_a^b (L v^*) u \, dx.
\]
If in fact \(p \) and \(q \) are real so that \(L^* = L \), then

\[
\int_a^b v^* u \, dx = \int_a^b (x^*)^* u \, dx = \left(\int_a^b u^* x^r \, dx \right)^* \]

\[
\left\| u \right\| = \int_a^b v^* u \, dx \leq \int_a^b \left(\int_a^b v^* u \, dx \right)^* \]

\[
\langle v^* x^r u \rangle = \langle v^* x^r 1u \rangle = \langle u^* x^r v \rangle
\]

which we interpret as \(L = L^+ \) i.e., the operator \(L \) is hermitian. So a self-adjoint \(L \) with real \(p \) and \(q \) is hermitian.

The self-adjoint character of \(L \) is effective only if

\[
\left[p(v^* u' - v^* u) \right]_a^b = 0, \quad \text{so one must choose}
\]

\(a \) and \(b \) carefully to fit each problem.

Usually, people require that all the functions \(u \) and \(v \) to which \(L \) is applied satisfy the boundary conditions

\[
\left. p v^* u' \right|_a^b = 0 = \left. p v^* v' \right|_b^b.
\]

Sometimes, one even \(v^* = 0 \) or \(v^r = 0 \),

\[
\left. p v^* u' \right|_a^b = 0 = \left. p v^* v' \right|_b^b, \quad \text{but these}
\]

extra conditions are not necessary.
In some cases a and b are taken to be $a = -\infty$ and $b = +\infty$, and it is assumed that

$$0 = P \nu(x) \text{ etc., at } x = \pm \infty.$$

One might imagine that self-adjoint operators are rare. But in fact one can multiply the generic 2nd-order differential operator

$$L u = P_0 u'' + p_1 u' + p_2 u$$

by

$$\frac{1}{P_0} e^{\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt}$$

and get a self-adjoint L:

$$\frac{1}{P_0} e^{\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt} L u = e^{\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt} u'' + \frac{p_1}{P_0} e^{\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt} u'$$

$$+ \frac{P_2}{P_0} e^{\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt} u$$

$$= \left\{ \exp \left[\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt \right] u' \right\}' + \frac{P_2}{P_0} \exp \left[\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt \right] u$$

$$= (p u')' + g u \quad \text{where}$$

$$p = \exp \left[\int_{p_0}^{x} \frac{P_1(t)}{P_0(t)} dt \right] \quad \text{and} \quad g = \frac{P_2}{P_0}.$$
So we always may cast a 2nd order differential operator into self-adjoint form, i.e., and if \(p, q \) are real, then it is Hermitean on functions \(u \) and \(v \) that satisfy the boundary conditions

\[
[p \left(v^* u' - u^* v' \right)]_a = 0.
\]

Eigen This and That

Suppose

\[
\lambda w^* u + L u = (p u')' + q u + \lambda w^* u = 0 \quad \text{i.e.}
\]

\[
(p(x) u'(x))' + q(x) u(x) + \lambda w(x) u(x) = 0,
\]

then \(\lambda \) is said to be the eigenvalue and \(w(x) \) is a known weight or density function. Here \(w(x) > 0 \) and \(w(x) = 0 \) only at isolated points. 'Eigen' means 'special' in Deutsch.

Legendre's eq. is a good example. It is

\[
0 = L y = (1-x^2)y'' - 2xy' + e(x) y
\]

\[
0 = (c_1 x^2 y)' + e(x) y
\]

As you will show when you do HW problem 8.5.5, series solutions exist for each
of the two solutions $k < 0$ and $k < 1$ of the indicial equation

$$k \ (k-1) = 0,$$

but the resulting series diverge for $x = \pm 1$ (i.e., $\theta = 0$ or π) unless k is an integer. This is why orbital angular momentum is quantized. So the eigenvalue is $l (l+1)$ for integral l.

The deuteron is a spin-1 bound state of a neutron and a proton with binding energy about 2.2 MeV. It is mostly an s-state with some d-state mixed in. So the spins of the n and p are aligned. If r is the relative distance in the reduced-mass formalism, then

$$-\frac{k^2}{2m} \Delta u + V(r) = E u, \quad V(r) = \begin{cases} V_0 & 0 < r < a \\ 0 & r \geq a \end{cases}$$

For an s-state boils down to this equation

$$u'' + k_1^2 u = 0 \quad u'' - k_2^2 u = 0$$

for $u(r) = r \psi(r)$ where $k_1 = \frac{2m}{\hbar^2} (E - V_0) > 0$ for $0 \leq r \leq a$ and

$$k_2^2 = \frac{2mE}{\hbar^2} \times 0$$

for $a < r$.

So \(y(r) = \alpha \sin k_1 r + \beta \cos k_1 r \) for \(r < a \), but \(\beta = 0 \) to avoid a singularity at \(r = 0 \), in
\[
y(r) = \frac{u(r)}{r},
\]
outside the square well,
\[
u = A e^{k_2 r} + B e^{-k_2 r},
\]
but \(A = 0 \) so that \(y \) can be normalized.

When one matches the two solutions at the boundary, \(r = a \), by requiring that
\[
u_1(a) = \alpha \sin k_1 a = B e^{-k_2 a} = u_1(a) \quad \text{and} \quad u_1'(a) = \alpha k_1 \cos k_1 a = -k_2 B e^{-k_2 a} = u_1'(a)
\]
one finds that
\[
\tan k_1 a = -\frac{k_1}{k_2} = -\sqrt{\frac{E-V_0}{-E}}, \quad E < 0
\]
\(V_0 < 0, \left| V_0 \right| > |E| \),
\[
\tan \left(\sqrt{\frac{2m^2(E-V_0)}{k_2^2}} \right) = -\sqrt{\frac{E-V_0}{-E}}
\]
which has only discrete, quantized solutions for \(E < 0 \) and \(V_0 < 0, \left| V_0 \right| > |E| \).
L is 2nd order. What about first-order Hermitean operators? Some examples are

\[\hat{p}^2 = \frac{\hbar}{i} \nabla \hat{p} \] in one dimension, \(p = \frac{\hbar}{i} \frac{d}{dx} \),

In this case,

\[\int_a^b u^* \hat{p} u = \int_a^b \frac{\hbar}{i} u \frac{d}{dx} u^* + \frac{\hbar}{i} \int_a^b [u^* u] \]

\[= \int_a^b u (\frac{\hbar}{i} \frac{d}{dx}) u^* + \frac{\hbar}{i} \int_a^b [u^* u] \]

So \(0 = [u^* u] \)

\[v^*(b) u(b) - v^*(a) u(a) \]

then

\[\int_a^b u^* \hat{p} u = \left(\int_a^b u \frac{d}{dx} u^* \right) = \int_a^b (p^+ u^* u) \]

\[= \int_a^b (p^- u^* u) \text{ so } p = p^+ \]

The trick is in the \(i \), and in the boundary conditions

\[0 = [v^* u] \]

which often are satisfied when \(a \to -\infty \),

\(b \to +\infty \), and both \(u \) and \(v \) are normalized.
Because of operators like \mathbf{p}^2, we generalize the notion of self-adjoint operators to hermitian operators, those for which
\[
\int_a^b v^* L u = \int_a^b (L^* v)^* u
\]
as long as u and v satisfy suitable boundary conditions at $x = a \& b$. We say $L = L^+$.

Suppose $L = L^+$, i.e., that L is hermitian, and that
\[
L u_i + \lambda_i w u_i = 0 \quad i = 1, 2, \ldots.
\]
Then also
\[
L u_j + \lambda_j w u_j = 0
\]
so that
\[
(L u_j)^* + \lambda_j^* w u_j^* = 0.
\]
Note we take $w(x) = w^*(x)$ to be real. Then both
\[
u_j^* L u_i + \lambda_i^* w u_j^* u_i = 0
\]
and
\[
u_i (L u_j)^* + \lambda_j^* w u_j^* u_i = 0
\]
so that
\[
\int_a^b [u_j^* L u_i - u_i (L u_j)^*] = (\delta_j^i - \lambda_i^*) \int_a^b w(x) u_j^*(x) u_i(x) dx.
\]
Hence, since $L = L^+$, as long as the u_i's satisfy the appropriate boundary conditions.
So,
\[(\lambda_j - \lambda_i) \int_a^b dx \, w(x) \, u_j^*(x) u_i(x) = 0. \]

Set \(i = j \). Then
\[(\lambda_j - \lambda_j) \int_a^b dx \, w(x) |u_i(x)|^2 = 0. \]

Since by assumption \(w(x) > 0 \) except at isolated points, it follows that
\[\lambda_j = \lambda_i. \]

The eigenvalues of a Hamiltonian operator are real.

3. The top equation reads
\[(\lambda_j - \lambda_i) \int_a^b dx \, w(x) \, u_j^*(x) u_i(x) = 0. \]

Thus the eigenfunctions \(u_i(x) \) and \(u_j(x) \) of different, unequal eigenvalues \(\lambda_j \neq \lambda_i \) must be orthogonal.

When two or more eigenfunctions do have the same eigenvalue, they are called degenerate. In the \(H \) atom, for instance, states with the same principal quantum number, \(n \), are degenerate to lowest order in the non-relativistic theory.
Suppose several \(u_i(x) \) all have the

same \(\lambda \)

\[
L u_i + \lambda w u_i = 0 \quad \text{for} \quad i = 1, 2, \ldots, N.
\]

Then any linear combination of the \(u_i \)'s also
will satisfy

\[
L \left(\sum_{i=1}^{N} c_i u_i \right) + \lambda w \left(\sum_{i=1}^{N} c_i u_i \right) = 0
\]

because \(L \) is a linear differential operator.

So one may choose the \(c_i \)'s so as not
make mutually orthogonal linear combinations

\[
\psi_i = \sum_{j=1}^{N} c_{ij} u_j.
\]

We may even make them orthonormal

\[
d_i = \frac{\psi_i}{\left[\int_{a}^{b} w(x) \right]^{1/2}}
\]

The Gram - Schmidt way:

Set \(\psi_i(x) = u_i(x) \)

\[
\phi_i(x) = \frac{\psi_i(x)}{\left[\int_{a}^{b} \psi_i^2(x) w(x) \, dx \right]^{1/2}}
\]
For \(n = 2 \), we set

\[\Psi_2(x) = u_2(x) + a_{21} \phi_1(x). \]

We want

\[0 = \int_a^b \psi_2(x) \phi_1^*(x) w(x) \]

\[= \int_a^b u_2(x) \phi_1^*(x) w(x) + a_{21} \int_a^b |\phi_1(x)|^2 w(x). \]

So

\[a_{21} = -\int_a^b u_2(x) \phi_1^*(x) w(x). \]

Thus

\[\phi_2(x) = \frac{\Psi_2(x)}{\left[\int_a^b |\Psi_2(x)|^2 w(x) \right]^{1/2}}. \]

Suppose now that \(\phi_1, \phi_2, \ldots, \phi_i \) are all orthonormal. We set

\[\Psi_{i+1}(x) = u_{i+1}(x) + \sum_{j=1}^i a_{i+1,j} \phi_j(x), \quad \text{We set} \]

\[0 = \int_a^b \psi_{i+1}(x) \phi_j^*(x) w(x) \]

\[0 = \int_a^b u_{i+1}(x) \phi_j^*(x) w(x) + a_{i+1,j} \int_a^b |\phi_j(x)|^2 w(x). \]

So

\[a_{i+1,j} = -\int_a^b u_{i+1}(x) \phi_j^*(x) w(x). \]
Finally

$$\phi_{i+1}(x) = \frac{\phi_{i+1}(x)}{\sqrt{\int_0^b |\phi_{i+1}(x)|^2 w(x) dx}}.$$

So to find the lilly, we write

$$\psi_{i+1}(x) = u_{i+1}(x) + \sum_{j=1}^i a_{i+1,j} \phi_j(x)$$

$$= u_{i+1}(x) - \sum_{j=1}^i \int_a^b u_{i+1}(x) \phi_j^*(x) w(x) \phi_j(x) dx$$

Now we set

$$P_j \psi_{i+1}(x) = \left[\int_a^b u_{i+1}(x) \phi_j^*(x) w(x) dx \right] \phi_j(x), \quad \forall m$$

$$(1 - \sum_{j=1}^i P_j) \psi_{i+1}(x).$$

Example 9.2.1

Say $u_m(x) = x^m \quad m = 0, 1, 2, \ldots$

and the interval is $-1 \leq x \leq 1$ and $w(x) = 1$.

Now $u_0 = 1$, so $\psi_0 = 1$, so $\phi_0 = \frac{1}{\sqrt{2}}$.

$\psi_1 = x + a_{10} \frac{1}{\sqrt{2}}$ and so $a_{10} = -\int_{-1}^{1} x dx = 0$

and $\phi_1(x) = \frac{1}{\sqrt{2}} x$.
\[\psi_{2} = x^{2} + a_{20} \frac{1}{\sqrt{2}} + a_{21} \sqrt{\frac{3}{2}} \ x \quad \text{and} \]

\[a_{20} = -\int_{-1}^{1} \frac{x^{2} dx}{\sqrt{2}} = -\frac{\sqrt{2}}{3} \]

\[a_{21} = -\int_{-1}^{1} \sqrt{\frac{3}{2}} x^{3} dx = 0 \quad \text{and so} \]

\[\psi_{2} = x^{2} - \frac{1}{3} \quad \text{and} \quad \phi_{-}^{2}(x) = \frac{5}{2} \frac{1}{2} (3x^{2} - 1). \]

Eventually

\[\phi_{3}^{2}(x) = \sqrt{\frac{7}{2}} \cdot \frac{1}{2} (5x^{3} - 3x). \]

It turns out that these are the Legendre polynomials

\[\phi_{n}(x) = \sqrt{\frac{2n+1}{2}} P_{n}(x), \]

apart from factors that reflect different normalization conditions.

Completeness

If any function \(f(x) \) in a certain space of functions \(S \) can be represented as

\[f(x) = \sum_{n=0}^{\infty} a_{n} \phi_{n}(x) \]
in the sense that

\[0 = \lim_{N \to \infty} \int_a^b \left| f(x) - \sum_{n=0}^{N} a_n \phi_n(x) \right|^2 w(x) dx, \]

then the set of functions \(\phi_n(x) \) is said to span that space \(S \) or to be complete in \(S \).

The coefficients \(a_n \) are

\[\int_a^b f(x) \phi_n(x) w(x) dx = \sum_{j=0}^{\infty} a_j \phi_j(x) \phi_n^*(x) w(x) dx \]

\[= \sum_{j=0}^{\infty} a_j \delta_{jn} = a_n \quad \text{so} \]

\[a_n = \int_a^b f(x) \phi_n^*(x) w(x) dx. \]

But when \(Lu = (pu')' + qu \) with \(p \) and \(q \) real

\[0 = Lu + \lambda w u \quad \text{and} \quad w \geq 0, \]

then

\[0 = (Lu)^* + \lambda w u^* = Lu^* + \lambda w u^*. \]

So \(u^* \) is also an eigenfunction and so we may replace \(u \) by the real function \(\frac{u + u^*}{2} \) suitably normalized.
Typical spaces S are the space L_2 of all square-integrable functions and the space C of all piece-wise continuous functions. The proof that the eigenfunctions of any class of hermitian operators are complete in L_2 or C is beyond the scope of this course.

But in the case of the sets of orthogonal polynomials — the Legendre polynomials and others listed in Table 9.3 — we can say more. These polynomials are equivalent to the powers of x, x^n for $n \geq 0$. So we have half of a Laurent series or a whole power series.

If the ϕ_n's are complete for a space S that includes the function f, then

$$f(x) = \sum_{n=0}^{\infty} a_n \phi_n(x) \quad \text{where} \quad a_n = \int_a^b f(x)w(x)\phi_n^*(x)dx$$

$$f(x) = \sum_{n=0}^{\infty} \int_a^b f(y)w(y)\phi_n^*(y)dy \phi_n(x)$$

$$= \int_a^b \left[\int_a^b f(y)w(y) \sum_{n=0}^{\infty} \phi_n^*(x)\phi_n^*(y) \right] dy \phi_n(x) S(x-y)$$

So

$$S(x-y) = (w(x)w(y))^{1/2} \sum_{n=0}^{\infty} \phi_n(x)\phi_n^*(y)$$

Completeness leads to a formula for $S(x-y)$.
Bessel's inequality is

\[0 \leq \int_a^b w(x) f(x)^2 \, dx - \frac{\infty}{i=0} a_i \Phi_i^2 \]

\[0 \leq \int_a^b w(x) f(x)^2 \, dx - \int_a^b w(x) f(x) \sum q_i \Phi_i^2 \]

\[- \int_a^b w(x) \Phi_i^2 \, dx \sum q_i \Phi_i^2 + \int_a^b w(x) \sum q_i \Phi_i^2 \Phi_j^2 \]

or

\[0 \leq \int_a^b w(x) f(x)^2 \, dx - \sum q_i a_i^2 - \sum q_i a_i^2 + \sum q_i a_i^2 \]

or

\[\int_a^b w(x) f(x)^2 \, dx \geq \sum_{i=0}^{\infty} a_i \Phi_i^2 \]

In many cases, the absolute-value signs are superfluous.

\[\text{Sohmanz's inequality} \]

Let \(\gamma = f + \lambda g \) so that

\[0 \leq \int_a^b (f^2 + \lambda g^2) \, dx = \int_a^b f^2 \, dx + \lambda \int_a^b g^2 \, dx + \lambda \int_a^b f g \, dx \]

Treating \(a \) and \(\lambda \) as independent variables, we get

\[0 \leq \int_a^b f^2 \, dx + \lambda \int_a^b g^2 \, dx \quad \text{and} \]

\[0 \leq \int_a^b f g \, dx + \lambda \int_a^b g f \, dx \]

\[\int_a^b (f^2 + \lambda g^2) \, dx \geq \lambda \int_a^b g^2 \, dx \]

\[\int_a^b (f^2 + \lambda g^2) \, dx \geq \lambda \int_a^b f^2 \, dx \]

\[\int_a^b f g \, dx + \lambda \int_a^b g f \, dx \geq 0 \]
\[0 = \int_a^b f(x) \, dx + \int_a^b g(x) \, dx \]

With these values of \(a \) and \(b \), we get

\[0 \leq \int_a^b f(x)^2 \, dx = \int_a^b f(x) \, dx - \left(\int_a^b f(x) \, dx \right)^2 \left(\int_a^b g(x) \, dx \right)^2 \left(\int_a^b g(x) \, dx \right) \left(\int_a^b g(x) \, dx \right) \]

\[\int_a^b f(x) \, dx \left(\int_a^b f(x) \, dx \right) + \int_a^b f(x) \, dx \int_a^b g(x) \, dx \]

so that

\[\int_a^b f(x)^2 \, dx \int_a^b g(x)^2 \, dx \geq \left(\int_a^b f(x) + \int_a^b g(x) \, dx \right)^2 \]

The vector inequality is

\[||a \times b||^2 \leq a \cdot a \cdot b \cdot b\]

or in Dirac notation:

\[(\Phi | 1) \leq (\Phi | \Phi) \cdot (1 | \Phi) \]

So when \(\Phi \) and \(\Psi \) are normalized, the probability of finding \(\Psi \) as \(\Phi \) is \(1 \)

\[P(\Phi, \Psi) \leq 1 \]
The review on pages 609-613 is worth reading.

Suppose $L = L^*$ is a hermitian operator with eigenfunctions ϕ_n and eigenvalues λ_n

$$L \phi_n + \lambda_n \phi_n = 0,$$

So $w(x) = 1$ here. Build the Green's function

$$G(x, y) = \sum_{n=0}^{\infty} \frac{\phi_n(x) \phi^*_n(y)}{\lambda_n - \lambda}.$$

See

$$(L + \lambda) G(x, y) = \sum_{n=0}^{\infty} \frac{(L + \lambda) \phi_n(x) \phi^*_n(y)}{\lambda_n - \lambda}$$

$$= \sum_{n=0}^{\infty} \frac{\lambda_n \phi_n(x) \phi^*_n(y)}{\lambda_n - \lambda}$$

$$= - \sum_{n=0}^{\infty} \phi_n(x) \phi^*_n(y) = - \delta(x-y).$$

So

$$(L + \lambda) G(x, y) = - \delta(x-y),$$

so if we have $L \psi + \lambda \psi = -f$, then we try

$$\psi(x) = \int d^3 y \ G(x, y) \rho(y)$$

so that

$$(L + \lambda) \psi(x) = \int d^3 x \ (L + \lambda) G(x, y) \rho(y) = -\int d^3 y \ \delta(x-y) \rho(y) = -f(x).$$
A more explicit treatment is available in one dimension. We will take L to be well and self-adjoint

$$Lu = (pu')' + qu$$

and we want $y_0 \approx 0(x)$

$$Ly(y) + f(x) = 0,$$

Then

$$G(x, y) = -\frac{1}{A} \int_{x}^{y} u(y)v(x) \, dy,$$

here A is a constant and

$$L u = L v = 0$$

and u and v respectively satisfy suitable boundary conditions at $x = a$ and $x = b$.

$$u(a)u'(a) = 0 \quad \text{or} \quad u(a) + \beta u'(a) = 0,$$

$$v(b)v'(b) = 0 \quad \text{or} \quad v(b) + \beta v'(b) = 0.$$

Set

$$y(x) = \int_{a}^{b} G(x, y) f(y) \, dy$$

$$= -\frac{1}{A} \int_{a}^{x} u(y)v(x) f(y) + \int_{x}^{b} u(x)v(y) f(y) \, dy - \frac{1}{A} \int_{a}^{b} u(x)v(y) f(y) \, dy$$

So

$$y'(x) = -\frac{u'(x)}{A} \int_{a}^{x} u(y) f(y) \, dy - \frac{u(x)}{A} \int_{x}^{b} v(y) f(y) \, dy$$

$$\left(-\frac{1}{A} u(x)v(x)f(x) + \frac{1}{A} u(x)v'(x)f(x) \right) = 0$$
\[y''(x) = - \frac{v''(x)}{A} \int_x^A u'(x') f(x') dx' - \frac{u''(x)}{A} \int_x^A v(x') f(x') dx' \]

\[-\frac{1}{A} \left[u(x) v'(x) - u'(x) v(x) \right] f(x). \]

Wronskian strikes again! Note that since \(u \) & \(v \) satisfy

\[0 = \Delta u = (pu')' + qu = \Delta v = (pv')' + qv = 0, \]

the Wronskian

\[W = uv' - u'v \]

satisfies

\[W' = uv'' - u''v = 0. \]

Now

\[0 = \Delta u \text{ implies } pu'' = -p'u - qu \text{ so } u'' = -\frac{p'u + qu}{p} \]

and \[0 = \Delta v \text{ implies } v'' = -\frac{p'v + qv}{p}. \] So

\[W' = u \left(-\frac{p'u + qu}{p} \right) - \left(-\frac{p'v + qv}{p} \right) v = -\frac{q}{p} \left(uv' - v'u \right) = -\frac{q}{p} W \text{ so} \]

\[\frac{W'}{W} = -\frac{q}{p} \left(\log W \right)' = -(\log p)' \]

So

\[\log W = -\log p + c \]

\[W = \frac{A}{p} \text{ so} \frac{W}{A} = \frac{1}{p} \]
So
\[y''(x) = -\frac{v''(x)}{A} \int_a^x u(y) f(y)\,dy - \frac{u''(x)}{A} \int_a^x \nabla f(y)\,dy - \frac{f(x)}{\partial x} \]

So
\[qy + py'' + p'y' = L y = -q\frac{v''}{A} - p\frac{v'}{A} \int_a^x u(y) f(y)\,dy - \frac{(qu' - pu'' - p' u)}{A} \int_a^x \nabla f(y)\,dy \]

\[- f(x) \]

\[Ly = -\frac{L v}{A} \int_a^x u(y) f(y)\,dy - \frac{L u}{A} \int_a^x \nabla f(y)\,dy - f(x) \]

But
\[L v = L u = 0. \quad \text{So} \]

\[Ly + f(x) = 0 \quad \text{or} \quad L y(x) + f(x) = 0. \]

Note that \(y(x) \) satisfies the same boundary conditions at \(x = a, b \) as \(u \) and \(v \):

\[y(a) = -\frac{1}{A} \int_a^b dy u(y) f(y) = \left(-\frac{1}{A} \int_a^b dy v(y) f(y) \right) u(a) \]

\[y'(a) = \left(-\frac{1}{A} \int_a^b dy v(y) f(y) \right) u'(a) \]

\[y(b) = \left(-\frac{1}{A} \int_a^b dy u(y) f(y) \right) v(b) \]

\[y'(b) = \left(-\frac{1}{A} \int_a^b dy u(y) f(y) \right) v'(b) \]