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Abstract

Our universe started nearly 14 billion years ago in a plasma hotter

than any nuclear explosion and has been cooling and expanding

ever since. After four minutes, the temperature of the plasma had

dropped below a billion degrees, and the quarks and gluons of the

plasma had turned into protons, neutrons, and helium nuclei. The

energy of the plasma, however, remained radiation, mostly photons,

neutrinos, and other light particles. After 51,000 years, the energy

density of ordinary and dark matter began to outweigh that of

radiation. When 380 thousand years had passed, the temperature

dropped below 3000 degrees and hydrogen atoms were stable for

the first time. The universe suddenly became transparent. About

3.6 billion years ago the dark-energy density exceeded that of

matter, and the expansion of the universe accelerated.
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The big bang

The English astronomer Fred Hoyle, who wrote the three best

science-fiction books, coined the phrase, “The Big Bang,” to make

fun of a theory that was a rival to his theory of continuous creation.

We don’t know what the maximum temperature was during the

big bang, but it surely was much hotter than a trillion degrees

Kelvin, probably hotter than 1016 K or about 1 TeV.

(The conversion factor is

1eV =
e

k
K = 1.16× 104 K (1)

where e is the charge of the electron and k is Boltzmann’s

constant.) I’ll say where this huge energy may have come from

later in this talk.



The first few minutes: temperatures and distances

During the first few minutes, the temperature rapidly dropped

T ≈ 1010 K√
t

(2)

where t is the time measured in seconds.

The distance a(t) between objects rapidly expanded as the

square-root of the time

a(t) ≈ a(t ′)

√
t

t ′
. (3)



The first few minutes: energies

The energy density for the first 51,000 years was mostly radiation,

and so it varied as the fourth power of the temperature T . The

equivalent mass density (m = E/c2) of a gas of photons at

temperature T is

ργ =
8π5 (kBT )4

15h3c5
(4)

which is 4.65× 10−31 kg m−3 at the present temperature

T0 = 2.7255± 0.0006 K. A few seconds after the big bang, the

energy density ρ of the photons, electrons, positrons, and their

neutrinos and antineutrinos was

ρ ≈ 3.8× 109 ×
(

T

1011 K

)4

kg/liter (5)

decreasing as the inverse of the square of the time, 1/t2.



The first few minutes: nuclei

Free neutrons decay in about a quarter of an hour (881.5 s). After

about 3 minutes and 46 seconds, the temperature had dropped

enough below 109 K that both deuterium (d = (n,p)) and helium

(He = (2n,2p)) were stable. The ordinary matter was then about

75 percent protons and 25 percent helium nuclei.

Most of the matter (84.3 %) then was (and now is) of an unknown

kind called dark matter because it interacts poorly or not at all

with light.



Dark matter

Jacobus Kapteyn in 1922, Jan Oort in 1932, and Fritz Zwicky in

1933 were the first to suggest that much of the matter in the

universe was of a kind that we can’t see. Zwicky applied the virial

theorem which relates the long-term time average 〈T 〉 of the

kinetic energy of particles trapped in a 1/r potential to the

long-term time average of their potential energy 〈V 〉

〈T 〉 = −1

2
〈V 〉. (6)

He estimated that the Coma cluster of galaxies had to have 400

times as much dark matter as visible matter.



The Bullet Cluster



Gravitational lensing



General relativity

The basic ideas of general relativity are:

I The laws of physics are the same in all coordinate systems.

I In every coordinate system, the squared length

ds2 =
3∑

i=0

3∑
j=0

gij dx
idx j (7)

is the same. Here dx0 = c dt, and gij is the spacetime metric.

I No local gravity in free-fall coordinates. (Think elevators.)



The Robertson-Walker metric and the scale factor

On the largest scales of distance, the universe is the same in all

directions (isotropic) and at all places (homogeneous). In such

universes, the metric gij is simple, and the invariant squared

distance is

ds2 = −c2 dt2 + a2(t)

[
dr2

1− k r2
+ r2

(
dθ2 + sin2 θ dφ2

)]
. (8)

Here the dimensionless function of time a(t) is the scale factor,

and k is a constant whose dimension is inverse squared length. If k

is negative, the universe is spatially infinite (and open); if k is

positive, the universe is finite (and closed). If k is zero, which it

may well be, the universe is infinite and flat, and apart from the

scale factor a(t) its metric is that of special relativity

ds2 = a2(t)
(
dx2 + dy2 + dz2

)
− c2dt2.



Einstein’s equations

For the Robertson-Walker metric of a spatially isotropic and

homogeneous universe, Einstein’s equations relate the square of

the Hubble rate H = ȧ/a to the energy density ρ

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− c2k

a2
(9)

where G = 6.674× 10−11 m3/(kg s2) is Newton’s constant.

I will set k = 0 in most of what follows so that

ȧ

a
=

√
8πG

3
ρ . (10)



The era of radiation

During the first 52 thousand years, the energy density ρ was

mostly that of radiation and so it was inversely proportional to the

fourth power of the scale factor

ρ = ρ0

(a0

a

)4
. (11)

The last two equations give

ȧ = b/a or a da = b dt (12)

so

a(t) =
√

2b t. (13)



Evolution of the scale factor during the era of radiation
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The era of matter (mostly dark matter)

If we assume that the particles of matter are stable, then their

energy density varies as

ρ = ρ0

(a0

a

)3
. (14)

Now instead of (12), we have

ȧ = b′/
√
a or

√
a da = b′ dt (15)

which we integrate to

a(t) =

(
3

2
b′ t

)2/3

. (16)

So the scale factor increases somewhat more rapidly during the era

of matter.



The era of matter: transparency

At t = 380, 000 years, the temperature dropped below 3000 K.

Hydrogen atoms became stable and the universe became

transparent.



The era of matter: the CMBR
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The era of dark energy

About 3.6 billion years ago or 10.2 billion years after the big bang,

the density of matter dropped below the density of empty space

ρΛ = 5.96× 10−27 kg/m3 (17)

and the era of matter ended. Because the vacuum energy density

ρΛ is constant, Einstein’s equations are particularly simple during

the era of dark energy

ȧ = H0 a or a(t) = a(0)eH0 t (18)

in which H0 is the present value of the Hubble rate

H0 = 67.74 km/(s Mpc) = 2.1953× 10−18s−1. (19)



The first 50 billion years
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The first 13.7 billion years



The first 13.8 billion years by Yinweichen



Inflation

Scalar fields fluctuate. Once upon a time, a scalar field φ(x)

underwent a quantum fluctuation to a value at which its

potential-energy density m2φ2(x) was huge. General relativity then

imposed what we may call gravitational friction, and so the return

of the field to its low-energy value φ(x) = 0 was not instantaneous.

During that brief interval, the energy density of the vacuum was

ρ = m2φ2(x), and so the scale factor a(t) expanded as

a(t) = a(0) exp

(√
(8πGm2/3)φ2(x) t

)
. (20)

Alan Guth called this inflation; Andrei Linde called it chaotic

inflation or eternal inflation. Inflation explains why the universe is

nearly flat and why the CMBR is nearly the same temperature in

all directions. Energy was conserved during and after inflation.
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Unique in its clarity, examples, and range, Physical Mathematics explains as 

simply as possible the mathematics that graduate students and professional 

physicists need in their courses and research. The author illustrates the 

mathematics with numerous physical examples drawn from contemporary 

research. In addition to basic subjects such as linear algebra, Fourier 

analysis, complex variables, differential equations, and Bessel functions, 

this textbook covers topics such as the singular-value decomposition, 

Lie algebras, the tensors and forms of general relativity, the central limit 

theorem and Kolmogorov test of statistics, the Monte Carlo methods 

of experimental and theoretical physics, the renormalization group of 

condensed-matter physics, and the functional derivatives and Feynman 

path integrals of quantum field theory.
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